CALCULATION OF GROWTH RATES AND COMPOSITIONS OF NANOLAYERS InXGa1-XAs ON A InP SUBSTRATE USING A 3D MODEL OF A HORIZONTAL MOVPE REACTOR
Abstract
About the Authors
A. A. GorskiyRussian Federation
L. B. Berliner
Russian Federation
E. V. Titova
Russian Federation
References
1. Зенкевич О. Метод конечных элементов в технике. - М.: Мир, 1975. C. 3-310.
2. http://www.comsol.com/
3. Cheng T.S., Hsiao M.C. Computation of three-dimensional flow and thermal fields in a model horizontal chemical vapor deposition // J. Crystal Growth. 2006. V. 293. P. 475-484.
4. Mucciato R., Lovergine N. Detailed thermal boundary conditions in the 3-D fluid-dynamic modeling of horizontal MOVPE reactors // J. Crystal Growth. 2000. V. 221. P. 758-764.
5. Han J.-H., Yoon D.-Y. 3D CFD for chemical transport profiles in a rotating disk CVD reactor // 3D Research. 2010. V. 1. Р. 26-30.
6. Zhong S.Q., Ren X.M., Huang Y.Q., Wang Q., Huang H. Numerical studies on flow and thermal fields in MOCVD reactor // Sci. China Press and Springer-Verlag Berlin Heidelberg. 2010. V. 55. № 6. P. 560-566.
7. Cheng T.S., Hsiao M.C. Numerical investigations of geometric effects on flow and thermal fields in a horizontal CVD reactor // J. Crystal Growth. 2008. V. 310. P. 3097-3106.
8. Ouazzani J., Rosenberrger F. Three-dimensional modeling of horizontal chemical vapor deposition // J. Crystal Growth. 1990. V. 100. P. 545-576.
9. Ingle N.K. Reaction kinetics and transport phenomena underlying the low-pressure metalorganic chemical vapor deposition of GaAs // J. Crystal Growth. 1996. V. 167. P. 543-556.
10. Salinger G. A., Shadid J.N. Analysis of gallium arsenide deposition in horizontal chemical vapor deposition reactor using massively parallel computations // J. Crystal Growth. 1999. V. 203. P. 516-533.
11. Kuan H., Su Y.K. Growth of GaAs and InGaAs by MOCVD using a tertiarybutylarsine source // Semiconductor Science Technology. 1995. V. 10. P. 540-545.
12. Jasik A., Wnuk A., Gaca J., Wójcik M., Wójcik-Jedlińska A., Muszalski J., Strupiński W. The influence of the growth rate and V/III ratio on the crystal quality of InGaAs/GaAs QW structures grown by MBE and MOCVD methods // J. Crystal Growth. 2009. V. 311. P. 4423-4432.
13. Zhao J.H, Tang X.H, Mei T., Zhang B.L., Huang G.Sh. MOCVD growth of InGaAsP/InGaAs multi-step-quantum well structure for QWIP application by using TBA and TBP in N2 ambient // J. Crystal Growth. 2004. V. 268. P. 432-436.
14. Мармалюк А.А. Легирование GaAs в условиях МОС-гидридной эпитаксии // Изв. вузов. Материалы электронной техники. 2004. № 3. С. 14-18.
15. Brokaw R.S. Predicting transport properties of dilute gases // Ind. & Eng. Chem. Process Design & Development. 1969. V. 8. № 2. P. 240-253.
16. Wilke C.R., Chang P. Correlation of diffusion coefficients in dilute solutions// AIChe J. 1955. P. 264-270.
17. Neufeld P.D., Janzen A.R., Aziz R.A. Empirical equations to calculate 16 of the transport collision integrals (l; s) for the Lenndard-Jones (12-6) potential // J. Chem. Physics. 1972. V. 57. P. 1100-1102.
18. Lennard-Jones J.E. On the determination of molecular fields // Proc. Roy. Soc. 1924. V. A 106. P. 463-477.
19. Svehla A.R. Estimated viscosities and thermal conductivities of gases at high temperatures // Lewis Research Center. 1962. Technical report R-132. P. 10-120.
For citation:
Gorskiy A.A., Berliner L.B., Titova E.V. CALCULATION OF GROWTH RATES AND COMPOSITIONS OF NANOLAYERS InXGa1-XAs ON A InP SUBSTRATE USING A 3D MODEL OF A HORIZONTAL MOVPE REACTOR. Fine Chemical Technologies. 2013;8(4):85-91. (In Russ.)