Preview

Тонкие химические технологии

Расширенный поиск

Рибавирин и его аналоги: можно ли старую собаку научить новым фокусам?

https://doi.org/10.32362/2410-6593-2019-14-4-7-23

Полный текст:

Аннотация

Обзор посвящен современному состоянию синтетических и биологических исследований аналогов рибавирина. Рибавирин – нуклеозидный противовирусный препарат широкого спектра действия с 50-ти-летней историей исследований и применения, но механизмы его действия до сих пор остаются неясными. В обзоре кратко изложены современные взгляды на биологические механизмы противовирусного и противоопухолевого действия рибавирина и его аналогов, существующие в этих взглядах противоречия и пробелы. В течение последних лет получены новые нуклеозидные аналоги – производные рибавирина по гетероциклическому основанию, потенциально представляющие собой противовирусные и противоопухолевые средства нового поколения. В статье дан систематический обзор исследований противовирусной и противоопухолевой активности и корреляций «структура – активность», в общей сложности, для 39 аналогов рибавирина, представленных за последние 15 лет, обсуждаются биологические мишени и возможные механизмы действия этих новых соединений, а также перспективы и направление дальнейших исследований.

Об авторе

М. В. Чудинов
МИРЭА – Российский технологический университет (Институт тонких химических технологий имени М.В. Ломоносова)
Россия

кандидат химических наук, доцент кафедры биотехнологии и промышленной фармации 

ResearcherID L-5728- 2016



Список литературы

1. Sidwell R.W., Huffman J.H., Khare L.G P., Allen B., Witkowski R.J.T., Robins K. Broad-spectrum antiviral activity of virazole: 1-β-D-Ribofuranosyl-1,2,4-triazole-3-carboxamide. Science. 1972;177(4050):705-706. https://doi.org/10.1126/science.177.4050.705

2. Oxford J.S. Inhibition of the replication of influenza A and B viruses by a nucleoside analogue (ribavirin). J. Gen. Virol. 1975;28(3):409-14. https://doi.org/10.1099/0022-1317-28-3-409

3. Hruska J.F., Bernstein J.M., Douglas R.G.Jr., Hall C.B. Effects of ribavirin on respiratory syncytial virus in vitro. Antimicrob. Agents Chemother. 1980;17(5):770-775. https://doi.org/10.1128/AAC.17.5.770

4. McCormick J.B., King I.J., Webb P.A., Scribner C.L., Craven R.B., Johnson K.M., Elliott L.H., Belmont-Williams R. Lassa fever. Effective therapy with ribavirin. N. Engl. J. Med. 1986;314(1):20-26. https://doi.org/10.1056/NEJM198601023140104

5. Huggins J.W. Prospects for treatment of viral hemorrhagic fevers with ribavirin, a broad-spectrum antiviral drug. Rev. Infect. Dis. 1989;11(Suppl_4):S750-S761. https://doi.org/10.1093/clinids/11.Supplement_4.S750

6. Shigeta S., Mori S., Baba M., Ito M., Honzumi K., Nakamura K., Oshitani H., Numazaki Y., Matsuda A., Obara T. Antiviral activities of ribavirin, 5-ethynyl-1-β-D-ribofuranosylimidazole-4-carboxamide, and 6'-(R)-6'-C-methylneplanocin A against several ortho- and paramyxoviruses. Antimicrob. Agents Chemother. 1992;36(2):435-439. https://doi.org/10.1128/AAC.36.2.435

7. Jordan I., Briese T., Fischer N., Lau J.Y., Lipkin W.I. Ribavirin inhibits West Nile virus replication and cytopathic effect in neural cells. J. Infect. Dis. 2000;182(4):1214-1217. https://doi.org/10.1086/315847

8. Kim Y., Lee C. Ribavirin efficiently suppresses porcine nidovirus replication. Virus Res. 2013;171(1):44-53. https://doi.org/10.1016/j.virusres.2012.10.018

9. Kihira S., Uematsu J., Kawano M., Itoh A., Ookohchi A., Satoh S., Maeda Y., Sakai K., Yamamoto H., Tsurudome M., O'Brien M., Komada H. Ribavirin inhibits human parainfluenza virus type 2 replication in vitro. Microbiology and Immunology. 2014;58(11):628-635. https://doi.org/10.1111/1348-0421.12192

10. Ramirez-Olivencia G., Estebanez M., Membrillo F.J., Ybarra M.D.C. Use of ribavirin in viruses other than hepatitis C. A review of the evidence. Enferm. Infect. Microbiol. Clin. 2018. (in press). https://doi.org/10.1016/j.eimc.2018.05.008

11. Streeter D.G., Witkowski J.T., Khare G.P., Sidwell R.W., Bauer R.J., Robins R.K., Simon L.N. Mechanism of action of 1-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Virazole), a new broad-spectrum antiviral agent. Proc. Natl. Acad. Sci. USA. 1973;70(4):1174-1178. https://doi.org/10.1073/pnas.70.4.1174

12. Miller J.P., Kigwana L.J., Streeter D.G., Robins R.K., Simon L.N., Roboz J. The relationship between the metabolism of ribavirin and its proposed mechanism of action. Ann. N. Y. Acad. Sci. 1977;284(1):211-229. https://doi.org/10.1111/j.1749-6632.1977.tb21953.x

13. Crotty S., Cameron C., Andino R. Ribavirin's antiviral mechanism of action: Lethal mutagenesis? J. Mol. Med. (Berl.). 2002;80(2):86-95. https://doi.org/10.1007/s00109-001-0308-0

14. Hong Z., Cameron C.E. Pleiotropic mechanisms of ribavirin antiviral activities. Progr. Drug Res.. Basel: Birkhäuser Basel. 2002;59:41-69. https://doi.org/10.1007/978-3-0348-8171-5_2

15. Parker W.B. Metabolism and antiviral activity of ribavirin. Virus Res. 2005;107(2):165-171.https://doi.org/10.1016/j.virusres.2004.11.006

16. Dixit N.M., Perelson A.S. The metabolism, pharmacokinetics and mechanisms of antiviral activity of ribavirin against hepatitis C virus. Cell. Mol. Life Sci. 2006;63(7-8):832-842. https://doi.org/10.1007/s00018-005-5455-y

17. Graci J.D., Cameron C.E. Mechanisms of action of ribavirin against distinct viruses. Rev. Med. Virol. 2006;16(1):37-48. https://doi.org/10.1002/rmv.483

18. Te H.S., Randall G., Jensen D.M. Mechanism of action of ribavirin in the treatment of chronic hepatitis C. Gastroenterol. Hepatol. (N. Y.). 2007;3(3):218-225. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3099343

19. Chung R.T., Gale M.Jr., Polyak S.J., Lemon S.M., Liang T.J., Hoofnagle J.H. Mechanisms of action of interferon and ribavirin in chronic hepatitis C: Summary of a workshop. Hepatology (Baltimore, Md.). 2008;47(1):306-320. https://doi. org/10.1002/hep.22070

20. Shiffman M.L. What future for ribavirin? Liver Int. 2009;29(Suppl 1):68-73. https://doi.org/10.1111/j.1478-3231.2008.01936.x

21. Paeshuyse J., Dallmeier K., Neyts J. Ribavirin for the treatment of chronic hepatitis C virus infection: A review of the proposed mechanisms of action. Curr. Opin. Virol. 2011;1(6):590-598. https://doi.org/10.1016/j.coviro.2011.10.030

22. Wu J.Z., Larson G., Walker H., Shim J. H., Hong Z. Phosphorylation of ribavirin and viramidine by adenosine kinase and cytosolic 5'-nucleotidase II: Implications for ribavirin metabolism in erythrocytes. Antimicrob. Agents Chemother. 2005;49(6):2164-2171. https://doi.org/10.1128/AAC.49.6.2164-2171.2005

23. Gallois-Montbrun S., Chen Y., Dutartre H., Sophys M., Morera S., Guerreiro C., Schneider B., Mulard L., Janin J., Veron M., Deville-Bonne D., Canard B. Structural analysis of the activation of ribavirin analogs by NDP kinase: Comparison with other ribavirin targets. Mol. Pharmacol. 2003;63(3):538-546. https://doi.org/10.1124/mol.63.3.538

24. Russmann S., Grattagliano I., Portincasa P., Palmieri V., Palasciano G. Ribavirin-induced anemia: Mechanisms, risk factors and related targets for future research. Cur. Med. Chem. 2006;13(27):3351-3357. https://doi.org/10.2174/092986706778773059

25. Nystrom K., Pettersson G., Wanrooij P.H., Brunet S., Said J., Ortolani G., Waldenstrom J., Adamek L., Tang K. W., Norberg P., Chabes A., Hellstrand K., Norder H., Lagging M. Inosine triphosphate pyrophosphatase enhances the effect of ribavirin on hepatitis C virus cell culture infection. J. Hepatol. 2017;66(1):321. http://dx.doi.org/10.1016/S0168-8278(17)30965-0

26. Nystrom K., Wanrooij P. H., Waldenstrom J., Adamek L., Brunet S., Said J., Nilsson S., Wind-Rotolo M., Hellstrand K., Norder H., Tang K.W., Lagging M. Inosine triphosphate pyrophosphatase dephosphorylates ribavirin triphosphate and reduced enzymatic activity potentiates mutagenesis in hepatitis C virus. J. Virol. 2018; 92(19):е01087-18. https://doi.org/10.1128/JVI.01087-18

27. Furihata T., Kishida S., Sugiura H., Kamiichi A., Iikura M., Chiba K. Functional analysis of purine nucleoside phosphorylase as a key enzyme in ribavirin metabolism. Drug Metabolism and Pharmacokinetics. 2014;29(2):211-214. https://doi.org/10.2133/dmpk.DMPK-13-NT-065

28. Page T., Connor J.D. The metabolism of ribavirin in erythrocytes and nucleated cells. Int. J. Biochem. 1990;22(4):379-383. https://doi.org/10.1016/0020-711X(90)90140-X

29. Wu J.Z., Walker H., Lau J.Y.N., Hong Z. Activation and deactivation of a broad-spectrum antiviral drug by a single enzyme: Adenosine deaminase catalyzes two consecutive deamination reactions. Antimicrob. Agents Chemother. 2003;47(1):426-431. https://doi.org/10.1128/AAC.47.1.426-431.2003

30. Martin P., Jensen D.M. Ribavirin in the treatment of chronic hepatitis C. J. Gastroenterol. Hepatol. 2008;23(6):844-855. https://doi.org/10.1111/j.1440-1746.2008.05398.x

31. Drabikowska A.K., Dudycz L., Shugar D. Studies on the mechanism of antiviral action of 1-(β-D-ribofuranosyl)-1,2,4-triazole-3-carboxamide (ribavirin). J. Med. Chem. 1979;22(6):653-657. https://doi.org/10.1021/jm00192a009

32. Nair V., Shu Q. Inosine monophosphate dehydrogenase as a probe in antiviral drug discovery. Antivir. Chem. & Chemother. 2007;18(5):245-258. https://doi.org/10.1177%2F095632020701800501

33. Wray S.K., Gilbert B.E., Noall M.W., Knight V. Mode of action of ribavirin: Effect of nucleotide pool alterations on influenza virus ribonucleoprotein synthesis. Antiviral Res. 1985; 5(1):29-37. https://doi.org/10.1016/0166-3542(85)90012-9

34. Crotty S., Maag D., Arnold J.J., Zhong W., Lau J.Y., Hong Z., Andino R., Cameron C.E. The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat. Med. 2000; 6(12):1375-1379. https://doi.org/10.1038/82191

35. Lanford R.E., Chavez D., Guerra B., Lau J.Y., Hong Z., Brasky K.M., Beames B. Ribavirin induces error-prone replication of GB virus B in primary tamarin hepatocytes. J. Virol. 2001;75(17):8074-8081. https://doi.org/10.1128/jvi.75.17.8074-8081.2001

36. Olschlager S., Neyts J., Gunther S. Depletion of GTP pool is not the predominant mechanism by which ribavirin exerts its antiviral effect on Lassa virus. Antiviral Res. 2011;91(2):89-93. https://doi.org/10.1016/j.antiviral.2011.05.006

37. Vo N.V., Young K.C., Lai M.M. Mutagenic and inhibitory effects of ribavirin on hepatitis C virus RNA polymerase. Biochemistry. 2003;42(35):10462-10471. https://doi.org/10.1021/bi0344681

38. Wray S.K., Gilbert B.E., Knight V. Effect of ribavirin triphosphate on primer generation and elongation during influenza virus transcription in vitro. Antiviral Res. 1985;5(1):39-48. https://doi.org/10.1016/0166-3542(85)90013-0

39. Eriksson B., Helgstrand E., Johansson N.G., Larsson A., Misiorny A., Noren J.O., Philipson L., Stenberg K., Stening G., Stridh S., Oberg B. Inhibition of influenza virus ribonucleic acid polymerase by ribavirin triphosphate. Antimicrob. Agents Chemother. 1977;11(6):946-951. https://doi.org/10.1128/aac.11.6.946

40. Heck J.A., Lam A.M.I., Narayanan N., Frick D.N. Effects of mutagenic and chain-terminating nucleotide analogs on enzymes isolated from hepatitis C virus strains of various genotypes. Antimicrob. Agents Chemother. 2008;52(6):1901-1911. https://dx.doi.org/10.1128%2FAAC.01496-07

41. Benarroch D., Egloff M.P., Mulard L., Guerreiro C., Romette J.L., Canard B. A structural basis for the inhibition of the NS5 Dengue virus mRNA 2'-O-methyltransferase domain by ribavirin 5'-triphosphate. J. Biol. Chem. 2004;279(34):35638-35643. https://doi.org/10.1074/jbc.M400460200

42. Goswami B.B., Borek E., Sharma O.K., Fujitaki J., Smith R.A. The broad spectrum antiviral agent ribavirin inhibits capping of mRNA. Biochem. Biophys. Res. Commun. 1979;89(3):830-836. https://doi.org/10.1016/0006-291X(79)91853-9

43. Carrillo-Bustamante P., Nguyen T.H.T., Oestereich L., Günther S., Guedj J., Graw F. Determining Ribavirin’s mechanism of action against Lassa virus infection. Scientific Reports. 2017;7(1):11693. https://doi.org/10.1038/s41598-017-10198-0

44. Hall C., Walsh E.E., Hruska J.F., Betts R.F., Hall W.J. Ribavirin treatment of experimental respiratory syncytial viral infection: A controlled double-blind study in young adults. JAMA. 1983;249(19):2666-2670. https://doi.org/10.1001/jama.1983.03330430042027

45. Reichard O., Schvarcz R., Weiland O. Therapy of hepatitis C: Alpha interferon and ribavirin. Hepatology. 2003;26(S3):108S-111S. https://doi.org/10.1002/hep.510260719

46. Hultgren C., Milich D.R., Weiland O., Sallberg M. The antiviral compound ribavirin modulates the T helper (Th) 1/Th2 subset balance in hepatitis B and C virus-specific immune responses. J. Gen. Virol. 1998;79(10):2381-2391. https://doi.org/10.1099/0022-1317-79-10-2381

47. Tam R.C., Pai B., Bard J., Lim C., Averett D.R., Phan U.T., Milovanovic T. Ribavirin polarizes human T cell responses towards a Type 1 cytokine profile. J. Hepatol. 1999;30(3):376-382. https://doi.org/10.1016/S0168-8278(99)80093-2

48. Metz P., Reuter A., Bender S., Bartenschlager R. Interferon-stimulated genes and their role in controlling hepatitis C virus. J. Hepatol. 2013;59(6):1331-1341. https://doi.org/10.1016/j.jhep.2013.07.033

49. Schneider W.M., Chevillotte M.D., Rice C.M. Interferon-stimulated genes: A complex web of host defenses. Ann. Rev. Immunol. 2014;32:513-545. https://doi.org/10.1146/annurev-immunol-032713-120231

50. Schoggins J.W. Interferon-stimulated genes: Roles in viral pathogenesis. Curr. Opin. Virol. 2014;6:40-46. https://doi.org/10.1016/j.coviro.2014.03.006

51. Sun J., Rajsbaum R., Yi M. Immune and non-immune responses to hepatitis C virus infection. World J. Gastroenterol. 2015;21(38):10739-10748. https://doi.org/10.3748/wjg.v21. i38.10739

52. Wong M.T., Chen S.S. Emerging roles of interferon-stimulated genes in the innate immune response to hepatitis C virus infection. Cell Mol. Immunol. 2016;13(1):11-35. https://doi.org/10.1038/cmi.2014.127

53. Hayes C.N., Chayama K. Interferon stimulated genes and innate immune activation following infection with hepatitis B and C viruses. J. Med. Virol. 2017;89(3):388-396. https://doi.org/10.1002/jmv.24659

54. Niedzwiedzka-Rystwej P., Ratajczak W., Tokarz-Deptula B., Deptula W. Mechanisms of type I interferon action and its role in infections and diseases transmission in mammals. Acta Biochim. Pol. 2017;64(2):199-205. https://doi.org/10.18388/abp.2016_1403

55. Wang W., Xu L., Su J., Peppelenbosch M.P., Pan Q. Transcriptional regulation of antiviral interferon-stimulated genes. Trends. Microbiol. 2017;25(7):573-584. https://doi. org/10.1016/j.tim.2017.01.001

56. Morales D.J., Lenschow D.J. The antiviral activities of ISG15. J. Mol. Biol. 2013;425(24):4995-5008. https://doi.org/10.1016/j.jmb.2013.09.041

57. Thomas E., Feld J.J., Li Q., Hu Z., Fried M.W., Liang T.J. Ribavirin potentiates interferon action by augmenting interferon-stimulated gene induction in hepatitis C virus cell culture models. Hepatology. 2011;53(1):32-41. https://doi.org/10.1002/hep.23985

58. Meier V., Burger E., Mihm S., Saile B., Ramadori G. Ribavirin inhibits DNA, RNA, and protein synthesis in PHA-stimulated human peripheral blood mononuclear cells: Possible explanation for therapeutic efficacy in patients with chronic HCV infection. J. Med. Virol. 2003;69(1):50-8. https://doi.org/10.1002/jmv.10264

59. Taylor M.W., Grosse W.M., Schaley J.E., Sanda C., Wu X., Chien S.C., Smith F., Wu T.G., Stephens M., Ferris M.W., McClintick J.N., Jerome R.E., Edenberg H.J. Global effect of PEG-IFN-alpha and ribavirin on gene expression in PBMC in vitro. J. Interferon Cytokine Res. 2004;24(2):107-18. https://doi.org/10.1089/107999004322813354

60. Stevenson N.J., Murphy A.G., Bourke N.M., Keogh C.A., Hegarty J.E., O'Farrelly C. Ribavirin enhances IFN-alpha signalling and MxA expression: A novel immune modulation mechanism during treatment of HCV. PLoS One. 2011;6(11):e27866. https://doi.org/10.1371/journal.pone.0027866

61. Feld J.J., Lutchman G.A., Heller T., Hara K., Pfeiffer J.K., Leff R.D., Meek C., Rivera M., Ko M., Koh C., Rotman Y., Ghany M.G., Haynes-Williams V., Neumann A.U., Liang T.J., Hoofnagle J.H. Ribavirin improves early responses to peginterferon through improved interferon signaling. Gastroenterology. 2010;139(1):154-162.e4. https://doi.org/10.1053/j.gastro.2010.03.037

62. Conte E., Modica A., Cacopardo B., Messina L., Nigro L., Messina A. Ribavirin up-regulates IL-12 p40 gene expression and restores IL-12 levels in Leishmania-treated PBMCs. Parasite Immunol. 2005;27(12):447-51. https://doi.org/10.1111/j.1365-3024.2005.00796.x

63. Tokumoto Y., Hiasa Y., Uesugi K., Watanabe T., Mashiba T., Abe M., Kumagi T., Ikeda Y., Matsuura B., Onji M. Ribavirin regulates hepatitis C virus replication through enhancing interferon-stimulated genes and interleukin 8. J. Infect. Dis. 2012;205(7):1121-1130. https://doi.org/10.1093/infdis/jis025

64. Kast R.E. Ribavirin in cancer immunotherapies - Controlling nitric oxide helps generate cytotoxic lymphocyte. Cancer Biology & Therapy. 2002;1(6):626-630. https://doi.org/10.4161/cbt.310

65. Müller W.E.G., Maidhof A., Taschner H., Zahn R.K. Virazole (1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamide; A cytostatic agent. Biochem. Pharmacol. 1977;26(11):1071-1075. https://doi.org/10.1016/0006-2952(77)90246-5

66. https://clinicaltrials.gov/ct2/results?term=ribavirin& cond=cancer

67. Petrelli R., Torquati I., Felczak K., Wilson D.J., Cappellacci L. Novel inhibitors of inosine monophosphate dehydrogenase as potential anti-cancer drugs: A patent review (2002-2014). In: Topics in Anti-Cancer Research. V. 3. Bentham Publ., 2014:37-102. https://doi.org/10.2174/97816080590891140301

68. Ochiai Y., Sano E., Okamoto Y., Yoshimura S., Makita K., Yamamuro S., Ohta T., Ogino A., Tadakuma H., Ueda T., Nakayama T., Hara H., Yoshino A., Katayama Y. Efficacy of ribavirin against malignant glioma cell lines: Follow-up study. Oncol. Rep. 2018;39(2):537-544. https://doi.org/10.3892/or.2017.6149

69. Pankiewicz K.W., Felczak K. From ribavirin to NAD analogues and back to ribavirin in search for anticancer agents. Heterocyclic Commun. 2015;21(5):249-257.

70. Shi F., Len Y., Gong Y., Shi R., Yang X., Naren D., Yan T. Ribavirin inhibits the activity of mTOR/eIF4E, ERK/Mnk1/ eIF4E signaling pathway and synergizes with tyrosine kinase inhibitor Imatinib to impair Bcr-Abl mediated proliferation and apoptosis in Ph+ leukemia. PLoS One. 2015;10(8):e0136746. https://doi.org/10.1371/journal.pone.0136746

71. De la Cruz-Hernandez E., Medina-Franco J.L., Trujillo J., Chavez-Blanco A., Dominguez-Gomez G., Perez-Cardenas E., Gonzalez-Fierro A., Taja-Chayeb L., Duenas-Gonzalez A. Ribavirin as a tri-targeted antitumor repositioned drug. Oncol. Rep. 2015;33(5):2384-2392. https://doi.org/10.3892/or.2015.3816

72. Shelton J., Lu X., Hollenbaugh J.A., Cho J.H., Amblard F., Schinazi R.F. Metabolism, biochemical actions, and chemical synthesis of anticancer nucleosides, nucleotides, and base analogs. Chem. Rev. 2016;116(23):14379-14455. https://doi.org/10.1021/acs.chemrev.6b00209

73. Naik G.S., Tyagi M.G. A pharmacological profile of ribavirin and monitoring of its plasma concentration in chronic hepatitis C infection. J. Clin. Exp. Hepatol. 2012;2(1):42-54. https://doi.org/10.1016/S0973-6883(12)60090-5

74. Ramasamy K.S., Tam R.C., Bard J., Averett D.R. Monocyclic l-nucleosides with type 1 cytokine-inducing activity. J. Med. Chem. 2000;43(5):1019-1028. https://doi.org/10.1021/jm9905514

75. Harris S., Robins R.K. Ribavirin: Structure and Antiviral Activity Relationships. Ribavirin – A Broad Spectrum Antiviral Agent. New York: Academic Press, 1980:1-21.

76. Streeter D.G., Miller J.P., Robins R.K., Simon L.N. The enzymic conversion of 1,2,4-triazole-3-carboxamide to ribavirin-5'-phosphate and its relationship to the proposed mechanism of action. Ann. N. Y. Acad. Sci. 1977;284(1):201-210. https://doi.org/10.1111/j.1749-6632.1977.tb21952.x

77. Kumarapperuma S.C., Sun Y., Jeselnik M., Chung K., Parker W.B., Jonsson C.B., Arterburn J.B. Structural effects on the phosphorylation of 3-substituted 1-β-D-ribofuranosyl-1,2,4-triazoles by human adenosine kinase. Bioorg. Med. Chem. Lett. 2007;17(11):3203-3207. https://doi.org/10.1016/j.bmcl.2007.03.018

78. Цилевич Т.Л., Щавелева И.Л., Носач Л.Н., Жовноватая В.Л., Смирнов И.П., Кочеткова С.В., Готтих Б.П., Флорентьев В.Л. Ациклические аналоги рибавирина. Синтез и противовирусная активность. Биоорган.химия. 1988;14(5):689–693

79. Witkowski J.T., Robins R.K. N-Substituted 1,2,4-triazoles : Pat. US 3991078. Appl. 03/18/1974; publ. 11/09/1976. 5 p.

80. Witkowski J.T., Robins R.K. Synthesis and Chemistry of Certain Azole Nucleosides. In: Chemistry and Biology of Nucleosides and Nucleotides. Eds. R.E.Harmon, R.K. Robins, L.B. Townsend. New York: Academic Press, 1978:267-286. https://doi.org/10.1016/B978-0-12-326140-3.50023-1

81. Preobrazhenskaya M.N., Korbukh I.A. The Synthesis and Reactions of Pyrrole, Pyrazole, Triazole, Indole, Indazole, and Benzotriazole Nucleosides and Nucleotides. In: Chemistry of Nucleosides and Nucleotides. Ed. L.B. Townsend. V. 3. New York: Springer US, 1994:1-105. https://doi.org/10.1007/978-1-4757-9667-4_1

82. Naik S.R., Witkowski J.T., Robins R.K. Synthesis of nucleosides of 5-substituted 1,2,4-triazole-3-carboxamides. J. Het. Chem. 1974;11(1):57-61. https://doi.org/10.1002/ jhet.5570110112

83. Константинова И.Д., Фатеев И.В., Музыка И.С., Галкина И.В., Бутенко А.М., Галегов Г.А., Белов А.В., Ларичев В.Ф., Дерябин П.Г., Швец В.И., Львов Д.К., Мирошников А.И. Биотехнологический способ получения и исследование противовирусной активности рибавирина и его 5-метил замещенных аналогов. Биотехнология. 2008; 24(4):69-79

84. Witkowski J.T., Robins R.K., Khare G.P., Sidwell R.W. Synthesis and antiviral activity of 1,2,4-triazole-3-thiocarboxamide and 1,2,4-triazole-3-carboxamidine ribonucleosides. J. Med. Chem. 1973;16(8):935-937. https://doi.org/10.1021/jm00266a014

85. Zeidler J., Baraniak D., Ostrowski T. Bioactive nucleoside analogues possessing selected five-membered azaheterocyclic bases. Eur. J. Med. Chem. 2015;97:409-418. https://doi.org/10.1016/j.ejmech.2014.11.057

86. Lin C.-C., Lourenco D., Xu G., Yeh L.-T. Disposition and metabolic profiles of [14C]viramidine and [14C]ribavirin in rat and monkey red blood cells and liver. Antimicrob. Agents Chemother. 2004;48(5):1872-1875. https://doi.org/10.1128/aac.48.5.1872-1875.2004

87. Lin C.-C., Luu K., Lourenco D., Yeh L.-T. Pharmacokinetics and metabolism of [14C]viramidine in rats and cynomolgus monkeys. Antimicrob. Agents Chemother. 2003;47(8):2458-2463. https://dx.doi.org/10.1128%2FAAC.47.8.2458-2463.2003

88. Lin C.C., Philips L., Xu C., Yeh L.T. Pharmacokinetics and safety of viramidine, a prodrug of ribavirin, in healthy volunteers. J. Clin. Pharmacol. 2004;44(3):265-275. https://doi.org/10.1177/0091270004262974

89. Sanghvi Y.S., Hanna N.B., Larson S.B., Fujitaki J.M., Willis R.C., Smith R.A., Robins R.K., Revankar G.R. Synthesis and evaluation of 5-amino-1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamidine and certain related nucleosides as inhibitors of purine nucleoside phosphorylase. J. Med. Chem. 1988;31(2):330-335. https://doi.org/10.1021/jm00397a010

90. Wu J.Z., Larson G., Hong Z. Dual-action mechanism of viramidine functioning as a prodrug and as a catabolic inhibitor for ribavirin. Antimicrob. Agents Chemother. 2004;48(10):4006-4008. https://dx.doi.org/10.1128%2FAAC.48.10.4006-4008.2004

91. Gabrielsen B., Phelan M.J., Barthel-Rosa L., See C., Huggins J.W., Kefauver D.F., Monath T.P., Ussery M.A., Chmurny G.N. Synthesis and antiviral evaluation of N-carboxamidine-substituted analogs of 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxamidine hydrochloride. J. Med. Chem. 1992;35(17):3231-3238. https://doi.org/10.1021/jm00095a020

92. Arterburn J., Kumarapperuma S., Jeselnik M., Chung D.-H., Sun Y., Parker W., Chu Y.K., Jonsson C. Design, synthesis and evaluation of 3-ethynyl-azole nucleosides with antiviral activity against hantaviruses. Antiviral Res. 2008;78(2):A33. http://dx.doi.org/10.1016/j.antiviral.2008.01.057

93. McDowell M., Gonzales S.R., Kumarapperuma S. C., Jeselnik M., Arterburn J.B., Hanley K.A. A novel nucleoside analog, 1-β-D-ribofuranosyl-3-ethynyl-[1,2,4]-triazole (ETAR), exhibits efficacy against a broad range of flaviviruses in vitro. Antiviral Res. 2010;87(1):78-80. https:// doi.org/10.1016/j.antiviral.2010.04.007

94. Bzowska A., Kulikowska E., Shugar D. Purine nucleoside phosphorylases: properties, functions, and clinical aspects. Pharmacology & Therapeutics. 2000;88(3):349-425. https://doi.org/10.1016/S0163-7258(00)00097-8

95. Liu W.Y., Li H.Y., Zhao B.X., Shin D.S., Lian S., Miao J.Y. Synthesis of novel ribavirin hydrazone derivatives and anti-proliferative activity against A549 lung cancer cells. Carbohydr. Res. 2009;344(11):1270-1275. https://doi.org/10.1016/j.carres.2009.05.017

96. Arterburn J.B., Jonsson C.B., Parker W.B. Azole nucleosides and use as inhibitors of RNA and DNA viral polymerases. Int. Pat. Appl. WO2008067002A2. Appl. 09/11/ 2006; publ. 06/05/2008. 64 p.

97. Konstantinova I.D., Chudinov M.V., Fateev I.V., Matveev A.V., Zhurilo N.I., Shvets V.I., Miroshnikov A.I. Chemoenzymatic method of 1,2,4-triazole nucleoside synthesis: Possibilities and limitations. Russ. J. Bioorg. Chem. 2013;39(1):53-71. https://doi.org/10.1134/S1068162013010056

98. Smirnova O.S., Konstantinova I.D., Fateev I.V., Zhurilo N.I., Chudinov M.V., Miroshnikov A.I. Biotechnological process for the preparation of an antiviral drug ribavirin analogues substituted on the amide group. FEBS J. 2013; 280 (Suppl):369. https://doi.org/10.1111/febs.12340

99. Goswami A., Van Lanen S.G. Enzymatic strategies and biocatalysts for amide bond formation: Tricks of the trade outside of the ribosome. Mol. Biosyst. 2015;11(2):338-353. https://doi.org/10.1039/c4mb00627e

100. Zhurilo N.I., Chudinov M.V., Matveev A.V., Smirnova O.S., Konstantinova I.D., Miroshnikov A.I., Prutkov A.N., Grebenkina L.E., Pulkova N.V., Shvets V I. Isosteric ribavirin analogues: Synthesis and antiviral activities. Bioorg. Med. Chem. Lett. 2018;28(1):11-14. https://doi.org/10.1016/j.bmcl.2017.11.029

101. Xia Y., Qu F., Peng L. Triazole nucleoside derivatives bearing aryl functionalities on the nucleobases show antiviral and anticancer activity. Mini-Reviews in Med. Chem. 2010;10(9):806-821. https://doi.org/10.2174/138955710791608316

102. Xia Y., Fan Z., Yao J., Liao Q., Li W., Qu F., Peng L. Discovery of bitriazolyl compounds as novel antiviral candidates for combating the tobacco mosaic virus. Bioorg. Med. Chem. Lett. 2006;16(10):2693-2698. https://doi.org/10.1016/j.bmcl.2006.02.023

103. Wang M., Zhu R., Fan Z., Fu Y., Feng L., Yao J., Maggiani A., Xia Y., Qu F., Peng L. Bitriazolyl acyclonucleosides synthesized via Huisgen reaction using internal alkynes show antiviral activity against tobacco mosaic virus. Bioorg. Med. Chem. Lett. 2011; 21(1): 354-357. https://doi.org/10.1016/j.bmcl.2010.10.141

104. Xia Y., Li W., Qu F., Fan Z., Liu X., Berro C., Rauzy E., Peng L. Synthesis of bitriazolyl nucleosides and unexpectedly different reactivity of azidotriazole nucleoside isomers in the Huisgen reaction. Org. Biomol. Chem. 2007;5(11):1695-1701. https://doi.org/10.1039/b703420b

105. Chudinov M.V., Matveev A.V., Prutkov A.N., Konstantinova I.D., Fateev I.V., Prasolov V.S., Smirnova O.A., Ivanov A.V., Galegov G.A., Deryabin P.G. Novel 5-alkyl(aryl)-substituted ribavirine analogues: synthesis and antiviral evaluation. Mendeleev Commun. 2016;26(3):214-216. https://doi.org/10.1016/j.mencom.2016.04.012

106. Zhu R., Wang M., Xia Y., Qu F., Neyts J., Peng L. Arylethynyltriazole acyclonucleosides inhibit hepatitis C virus replication. Bioorg. Med. Chem. Lett. 2008;18(11):3321-3327. https://doi.org/10.1016/j.bmcl.2008.04.026

107. Neyts J., Peng L., Que F., Zhu R. Novel viral replication inhibitors: Int. Pat. Appl. WO2009015446A2. Appl. 07/27/2007; publ. 02/05/2009. 50 p.

108. Wan J., Xia Y., Liu Y., Wang M., Rocchi P., Yao J., Qu F., Neyts J., Iovanna J. L., Peng L. Discovery of novel arylethynyltriazole ribonucleosides with selective and effective antiviral and antiproliferative activity. J Med Chem. 2009;52(4):1144-1155. https://doi.org/10.1021/jm800927r

109. Chudinov M.V., Prutkov A.N., Matveev A.V., Grebenkina L.E., Konstantinova I.D., Berezovskaya Y.V. An alternative route to the arylvinyltriazole nucleosides. Bioorg. Med. Chem. Lett. 2016;26(14):3223-3225. https://doi.org/10.1016/j.bmcl.2016.05.072

110. Peng L., Rocchi P., Iovanna J., Xia Y., Qu F., Wan J., Liu Y., Wang M. Novel triazole derivatives, their preparation and their application in therapeutics: US Pat. Appl. 2011136754A1; appl. 02/14/2011; publ. 06/09/2011. 26 p.

111. Xia Y., Liu Y., Wan J., Wang M., Rocchi P., Qu F., Iovanna J. L., Peng L. Novel triazole ribonucleoside down-regulates heat shock protein 27 and induces potent anticancer activity on drug-resistant pancreatic cancer. J. Med. Chem. 2009;52(19):6083-6096. https://doi.org/10.1021/jm900960v

112. Liu Y., Xia Y., Fan Y., Maggiani A., Rocchi P., Qu F., Iovanna J. L., Peng L. N-Aryltriazole ribonucleosides with potent antiproliferative activity against drug-resistant pancreatic cancer. Bioorg. Med. Chem. Lett. 2010;20(8):2503-2507. https://doi.org/10.1016/j.bmcl.2010.02.104

113. Xia Y., Liu Y., Rocchi P., Wang M., Fan Y., Qu F., Iovanna J. L., Peng L. Targeting heat shock factor 1 with a triazole nucleoside analog to elicit potent anticancer activity on drug-resistant pancreatic cancer. Cancer Lett. 2012;318(2):145-153. https://doi.org/10.1016/j.canlet.2011.09.043

114. Xia Y., Wang M., Demaria O., Tang J., Rocchi P., Qu F., Iovanna J. L., Alexopoulou L., Peng L. A novel bitriazolyl acyclonucleoside endowed with dual antiproliferative and immunomodulatory activity. J. Med. Chem. 2012;55(11):5642-5646. https://doi.org/10.1021/jm300534u

115. Chen M.M., Zhou Z.W., Suo Y.X., Li M.Y., Yao J.H., Peng L., Xia Y. Acyclonucleosides bearing coplanar arylethynyltriazole nucleobases: synthesis, structural analysis, and biological evaluation. New Journal of Chemistry. 2017;41(16):8509-8519. https://doi.org/10.1039/C7NJ01406F

116. Xia Y., Wang M., Beraldi E., Cong M., Zoubeidi A., Gleave M., Peng L. A novel triazole nucleoside suppresses prostate cancer cell growth by inhibiting heat shock factor 1 and androgen receptor. Anticancer Agents Med. Chem. 2015;15(10):1333-1340. https://doi.org/10.2174/1871520615666150617110943

117. Константинова И.Д., Чудинов М.В., Прутков А.Н., Матвеев А.В., Гребенкина Л.Е., Дорофеева Е.В. Амид 5-(тетрагидрофуран-2-ил)-1,2,4-триазол-3-карбоновой кислоты, обладающий противовирусной активностью, и способ его получения: пат. 2624018 Рос.Федерация. № 2016138180A; заявл. 26.09.2016; опубл.30.06.2017. Бюл. № 19. 8 с.


Дополнительные файлы

1. Рис. 3. Механизмы действия рибавирина против HCV [21]
Тема
Тип Research Instrument
Посмотреть (105KB)    
Метаданные

Для цитирования:


Чудинов М.В. Рибавирин и его аналоги: можно ли старую собаку научить новым фокусам? Тонкие химические технологии. 2019;14(4):7-23. https://doi.org/10.32362/2410-6593-2019-14-4-7-23

For citation:


Chudinov M.V. Ribavirin and its analogs: Сan you teach an old dog new tricks? Fine Chemical Technologies. 2019;14(4):7-23. (In Russ.) https://doi.org/10.32362/2410-6593-2019-14-4-7-23

Просмотров: 102


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)