Fine Chemical Technologies

Advanced search

Lipidic strategy for improving bioavailability of nucleoside HIV reverse transcriptase inhibitor

Full Text:


In recent years, various approaches to the prodrug design on the basis of anti-HIV active nucleoside compounds used in the therapy are intensively investigated. In this paper, the principles of modifying this class of drugs by lipid substances allowing obtained conjugates to insert in natural lipid transport and metabolic pathways that can increase nucleoside agents bioavailability are described. Literature data associated with the research of the pronucleotide approach serving the purpose of increasing nucleoside drugs therapeutical efficacy and reducing the side effects on the organism are reviewed. Experimental data obtained by the authors in course of research of synthetic routes and properties of the new lipid-modified anti-HIV nucleosides are also presented.

About the Authors

N. S. Shastina
МИТХТ им. М.В. Ломоносова, 119571, Москва, пр-т Вернадского, д. 86
Russian Federation

E. O. Baranova
МИТХТ им. М.В. Ломоносова, 119571, Москва, пр-т Вернадского, д. 86
Russian Federation

L. N. Dyakova
МИТХТ им. М.В. Ломоносова, 119571, Москва, пр-т Вернадского, д. 86
Russian Federation

D. V. Lonshakov
МИТХТ им. М.В. Ломоносова, 119571, Москва, пр-т Вернадского, д. 86
Russian Federation

V. I. Shvets
МИТХТ им. М.В. Ломоносова, 119571, Москва, пр-т Вернадского, д. 86
Russian Federation


1. Clercq E. Antiviral drugs in current clinical use // J. Clin. Virol. 2004. V. 30. № 2. P. 115-133.

2. Schinazi R.F., Hernandez-Santiago B.I., Hurwitz S.J. Pharmacology of current and promising nucleosides for the treatment of human immunodeficiency viruses // Antivir. Res. 2006. V. 71. P. 322-334.

3. Mehello Y., Clercq E. Twenty-six years of anti-HIV drug discovery: Where do we stand and where do we go? // J. Med. Chem. 2010. V. 53. P. 521-538.

4. Charman W.N., Porter C.J.H. Lipophilic prodrugs designed for intestinal lymphatic transport // Adv. Drug Deliv. Rev. 1996. V. 19. P. 149-169.

5. Lambert D.M. Rationale and applications of lipids as prodrug carrier // Eur. J. Pharm. Sci. 2000. V. 11 (Suppl. 2). P. S15-S27.

6. Trevaskis N.L., Charman W.N., Porter C.J.H. Lipid-based delivery systems and intestinal lymphatic drug transport: A mechanistic update // Adv. Drug Deliv. Rev. 2008. V. 60. P. 702-716.

7. Porter C.J.H., Trevaskis N.L., Charman W.N. Lipids and lipid-based formulations: Optimizing the oral delivery of lipophilic drugs // Nat. Rev. Drug Discov. 2007. V. 6. P. 231-248.

8. Gumina G., Choi Y., Chu C.K. Antiviral nucleosides: Chiral synthesis and chemotherapy. - Amsterdam: Elsevier, 2003. P. 1-76.

9. Holy A. Antiviral acyclic nucleoside phosphonates structure activity studies // Antivir. Res. 2006. V. 71. P. 248-253.

10. Ali S.M., Khan A.R., Ahmad M.U., Sheikh S., Ahmad I. Synthesis and biological evaluation of gemcitabine-lipid conjugate (NEO6002) // Bioorg. Med. Chem. Lett. -2005. V. 15. P. 25712574.

11. Scriba G.K.E. Phenytoin-lipid conjugates as potential prodrugs of phenytoin // Arch. Pharm. (Weinheim). 1993. V. 326. P. 477-481.

12. Lalanne M., Paci A., Andrieux K., Dereuddre-Bosquet N., Clayette P., Deroussent A., Re M., Vassal G., Couvreur P., Desmaële D. Synthesis and biological evaluation of two glycerolipidic prodrugs of didanosine for direct lymphatic delivery against HIV // Bioorg. Med. Chem. 2007. V. 17. P. 2237-2240.

13. Wong A., Toth I. Lipid, sugar and liposaccharide based delivery systems // Curr. Med. Chem. 2001. V. 8. № 9. P. 1123-1136.

14. Clercq E. Toward improved anti-HIV chemotherapy: Therapeutic strategies for intervention with HIV infections // J. Med. Chem. 1995. V. 38. № 14. P. 2491-2517.

15. Zemlicka J. Lipophilic phosphoramidates as antiviral pronucleotides // Biochim. Biophys. Acta. 2002. V. 1587. P. 276-286.

16. Jones R.J., Bischofberger N. Minireview: Nucleotide prodrugs // Antiviral Res. 1995. V. 27. P. 1-17.

17. Saboulard D., Naesens L., Cahard D., Salgado A., Pathirana R., Velazquez S., McGuigan C., Clercq E., Balzarini J. Characterization of the activation pathway of phosphoramidate triester prodrugs of stavudine and zidovudine // Mol. Pharmacol. 1999. V. 56. P. 693-704.

18. Hu L. Prodrugs: Effective solutions for solubility, permeability and targeting challenges // IDrugs. 2004. V. 7. № 8. P. 736-742.

19. Uckun F.M., Pendergrass S., Venkatachalam T.K., Qazi S., Richman D. Stampidine is a potent inhibitor of zidovudine- and nucleoside analog reverse transcriptase inhibitor-resistant primary clinical human immunodeficiency virus type 1 isolates with thymidine analog mutations // Antimicrob. Agents Chemother. 2002. V. 46. № 11. P. 3613-3616.

20. Birkus G., Hitchcock M., Cihlar T. Assessment of mitochondrial toxicity in human cells treated with tenofovir: comparison with nucleoside reverse transcriptase inhibitors // Antimicrob. Agents Chemother. 2002. V. 46. № 3. P. 716-723.

21. Clercq E. Antiviral drug discovery and development: Where chemistry meets with biomedicine // Antivir. Res. 2005. V. 67. № 2. P. 56-75.

22. Schultz C. Prodrugs of biologically active phosphate esters // Bioorg. Med. Chem. 2003. V. 11. P. 885-898.

23. Carl P., Chakravarty P., Katzenellenbogen J. A novel connector linkage applicable in prodrug design // J. Med. Chem. 1981. V. 24. № 5. P. 479-480.

24. Schultz C., Vajanaphanich M., Harootunian A.T., Sammak J.P., Barrett E.K., Tsien Y.R. Acetoxymethyl esters of phosphates, enhancement of the permeability and potency of cAMP // J. Biol. Chem. 1993. V. 268. P. 6316-6322.

25. Dickson J.K., Biller S.A., Magnin D.R. [et al.]. Orally active squalene synthase inhibitors: bis((acyloxy)alkyl) prodrugs of the α-phosphonosulfonic acid moiety // J. Med. Chem. 1996. V. 39. P. 661-664.

26. Lefebvre I., Perigaud C., Pompon A., Aubertin A.-M., Girardet J.-L., Kirn A., Gosselin G., Imbach J.-L. Mononucleoside phosphotriester derivatives with S-acyl-2-thioeyhyl bioreversible phosphate-protecting groups: Intracellular deliver of 3'-azido-2',3'-dideoxythymidine 5'-monophosphate // J. Med. Chem. 1995. V. 38. P. 3941-3950.

27. Villard A.-L., Coussot G., Lefebvre I., Augustijns P., Aubertin A.M., Gosselin G., Peyrottes S., Perigaud C. Phenyl phosphotriester derivatives of AZT: Variations upon the SATE moiety // Bioorg. Med. Chem. 2008. V. 16. P. 7321-7329.

28. Meier C. cycloSal-pronucleotides - design of chemical trojan horses // Mini Rev. Med. Chem. 2002. V. 2. P. 219-234.

29. Meier C., Clercq E., Balzarini J. Nucleotide delivery from cycloSaligenyl-3'-azido-3'-deoxythymidine monophosphates (cycloSal-AZTMP) // Eur. J. Org. Chem. 1998. V. 1998. P. 837-846.

30. Meier C., Lorey M., Clercq E., Balzarini J. cycloSal-2',3'-dideoxy-2',3'-didehydrothymidine monophospate (cycloSal-d4TMP): Synthesis and antiviral evaluation of a new d4TMP delivery system // J. Med. Chem. 1998. V. 41. P. 1417-1427.

31. Liang Y., Narayanasamy J., Schinazib R.F., Chu C.K. Phosphoramidate and phosphate prodrugs of (-)-β-D-(2R,4R)-dioxolane-thymine: Synthesis, anti-HIV activity and stability studies // Bioorg. Med. Chem. 2006. V. 14. P. 2178-2189.

32. Лоншаков Д.В., Баранова Е.О., Лютик А.И., Шастина Н.С., Швец В.И. Синтез глицеролипидных производных 3'-азидо-3'-дезокситимидина и исследование их свойств // Хим.-фарм. журн. 2010. Т. 44. № 10. С. 27-34.

33. Berridge M.J., Lipp P., Bootman M.D. The versatility and universality of calcium signaling // Nature Rev. Mol. Cell Biol. 2000. V. 1. P. 11-21.

34. Шастина Н.С., Тучная О.А., Эйнисман Л.И., Каширичева И.И., Степанов А.Е., Юркевич А.М., Швец В.И. Исследования в области производных асимметрично замещенного мио-инозита. XXXIX. Синтез конъюгата 2`,3`-дидегидро-3`-дезокситимидина с фосфатидилинозитом, нового нуклеозидфосфолипида с потенциальной анти-ВИЧ-активностью // Биоорган. химия. 2003. Т. 29. № 3. С. 296-302.

For citation:

Shastina N.S., Baranova E.O., Dyakova L.N., Lonshakov D.V., Shvets V.I. Lipidic strategy for improving bioavailability of nucleoside HIV reverse transcriptase inhibitor. Fine Chemical Technologies. 2011;6(2):71-80. (In Russ.)

Views: 60

ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)