Fine Chemical Technologies

Advanced search


Full Text:


Complex compounds NiCl2·2HMTA·10H2O (1), CoCl2·2HMTA·10H2O (2), CoCl2·HMTA·4.5H2O (3) were prepared by the reaction of nickel(II) and cobalt(II) chlorides with urotropine (HMTA). Compounds 1 and 2 are isostructural, their structure corresponds to the earlier studied crystal structure [Ni(H2O)6]Cl2·4H2O·2HMTA. Thermal destruction of the complex compounds 1-3 was studied by TGA and high-temperature IR-spectroscopy. The TGA curve for compound 1 shows stepwise mass loss caused by two-stage loss of all water molecules (up to 170°C) and one urotropine molecule (up to 270°C) followed by decomposition of NiCl2·HMTA. The X-ray diffraction pattern of the resulting solid shows no reflections typical for the metal and its simplest nitrogen-, carbon- and chlorine-containing compounds. Thermal decomposition of сompounds 2 and 3 proceed similarly, but water is removed in one stage. IR spectra, which were recorded at high temperature (up to 220-230°C) show gradual decrease of intensity of the bands assigned to vibrations of water molecules. The bands of the methylene groups of urotropine do not change on heating. However, the bands of the C-N vibrations shift from ~1050 and ~1008 cm-1 in the spectra of urotropine and [M(H2O)6](HMTA)2Cl2·4H2O to 1015-1019 and 984-995 cm-1, respectively, indicating coordination of urotropine molecules instead of the removed water molecules. The long-wave IR spectra for NiCl2·6H2O and compound 1 at ambient temperature show bands of Ni-O stretching vibrations and O-Ni-O bending vibrations. After heating 1 at 115° C, bands of Ni-N and Ni-Cl appear, which indicates the coordination of urotropine molecules and chloride ions after the removal of outer-sphere and inner-sphere water molecules.

About the Authors

D. V. Golubev
Moscow Technological University (Institute of Fine Chemical Technologies)
Russian Federation
Moscow, 119571 Russia

E. V. Savinkina
Moscow Technological University (Institute of Fine Chemical Technologies)
Russian Federation
Moscow, 119571 Russia

A. .. Al-Khazraji
Moscow Technological University (Institute of Fine Chemical Technologies)
Russian Federation
Moscow, 119571 Russia

M. N. Davydova
Moscow Technological University (Institute of Fine Chemical Technologies)
Russian Federation
Moscow, 119571 Russia


1. Mohammed S.F., Refat M.S., El-Metwaly N.M. Synthesis a new series of methenamine complexes with some different metal ions: Spectral, thermal and biological investigations // J. Life Sci. 2012. V. 9. № 2. P. 1243–1253.

2. Mbonu I.J., Okpalaezinne N.P. Synthesis, characterization and biological activity of mixed ligands complex of Co(II) ions with succinic acid and hexamethylenetetramine // J. Chem. Mater. Res. 2015. V. 7. № 2. P. 52–55.

3. Degagsa B., Faye G., Fernandez N. Synthesis, characterization and antimicrobial activity of hexamethylenetetramine copper(II) complex // World J. Pharm. Pharm. Sci. 2013. V. 2. № 6. P. 6391–6404.

4. Agwara M.O., Yufanyi M.D., Foba-Tendo J.N., Atamba M.A., Ndinteh D.T. Synthesis, characterization and biological activities of Mn(II), Co(II) and Ni(II) complexes of hexamethylenetetramine // J. Chem. Pharm. Res. 2011. V. 3. № 3. P. 196–204.

5. Tabong C.D., Yufanyi D.M., Paboudam A.G., Nono K.N., Eni D.B., Agwara M.O. Synthesis, Crystal structure, and antimicrobial properties of [dia quabis(hexamethylenetetramine)diisothiocyanato-κn] nickel(II)  complex // Adv. Chem. 2016. V. 2016. Article ID 5049718. 8 p.

6. Ertaş F.S., Saraç F.E., Ünal U., Birer Ö. Ultrasoundassisted hexamethylenetetramine decomposition for the synthesis of alpha nickel hydroxide intercalated with different anions // J. Solid State Electrochem. 2015. V. 19. № 10. P. 3067–3077.

7. Kuriakose S., Satpati B., Mohapatra S. Facile synthesis of Co doped ZnO nanodisks for highly efficient photocatalytic degradation of methyl orange // Adv. Mater. Lett. 2015. V. 6. P. 217–223.

8. Yufanyi D.M., Tendo J.F., Ondoh A.M., Mbadcam J.K. CdO nanoparticles by thermal decomposition of a cadmium-hexamethylenetetramine complex // J. Mater. Sci. Res. 2014. V. 3. № 3. P. 1–11.

9. Prabhu Y.T., Rao K.V., Kumar V.S.S., Kumari B.S. Synthesis of ZnO nanoparticles by a novel surfactant assisted amine combustion method // Adv. Nanopart. 2013. V. 2. P. 45–50.

10. Tabong C.D., Ondoh A.M., Yufanyi D.M., Foba J. Cobalt(II) and zinc(II) complexes of hexamethylenetetramine as single source precursors for their metal oxide nanoparticles // J. Mater. Sci. Res. 2015. V. 4. № 4. Р. 70–81.

11. Polezhaeva O.S., Yaroshinskaya N.V., Ivanov V.K. Formation mechanism of nanocrystalline ceria in aqueous solutions of cerium(III) nitrate and hexamethylenetetramine // Inorg. Mater. 2008. V. 44. № 1. P. 51–57.

12. Si Y., Xiong Z., Liu X., Li M. A highly active nitrogen-containing non-precious metal catalyst CoHMTA/C for oxygen reduction reaction // Int. J. Electrochem. Sci. 2015. V. 10. P. 5212–5221.

13. Chernavskii P.A., Afanas’ev P.V., Pankina G.V., Perov N.S. Formation of Co nanoparticles in the process of thermal decomposition of the cobalt complex with hexamethylenetetramine (NO3)2Co(H2O)6(HMTA)2·4(H2O) // J. Phys. Chem.2008. V. 82. № 13. P. 2176–2181.

14. Afanasiev P., Chouzier S., Czeri T., Pilet G., Pichon C., Roy M., Vrinat M. Cobalt hexamethylentetramine complexes (NO3)2Me(H2O)6(HMTA)2·4H2O (Me = Co2+,Ni2+): New molecular precursors for the preparation of metal // J. Inorg. Chem. 2008. V. 47. № 7. P. 2303–2311.

15. Paboudam A.G., Gérard C., Mohamadou A., Agwara M.O., Conde M.A. Physicochemical studies of some hexamethylenetetramine metal(II) complexes // Bull. Chem. Soc. Ethiop. 2004. V. 18. № 2. P. 143–148.

16. Agwara M.O., Ndifon P.T., Ndikontar M.K., Ndifon P.T. Solution studies on Co(II), Ni(II), Cu(II),and Zn(II) complexes of hexamethylenetetramine in aqueous and non-aqueous solvents // Int. J. Inorg. Chem. 2014. Article ID 397132. 9 p.

17. Kirillov A.M. Hexamethylenetetramine: An old new building block for design of coordination polymers // Coord. Chem. Rev. 2011. V. 255. № 15-16. P. 1603–1622.

18. Agwara M.O., Ndifon P.T., Yufanyi M.D., Foba Tendo J.N., Atamba M.A., Awawou P.G., Galindo A., Álvarez E. Synthesis, characterization and crystal structure of a three-dimensional network of an H-bonded Ni(II) hexametylenetetramine complex // Rasayan J. Chem. 2010. V. 3. P. 207–213.

19. Hu M.-L., Fang L.-P., Cheng Y.-Q., Jin Z.-M. Crystal structure of hexaaquacobalt(II) dibromide bis(hexamethylenetetramine tetrahydrate, [(H2O)6Co]Br2·2(C6H12N4)·4H2O // Ζ. Kristallogr. 2002. V. 217. P. 121–122.

20. Singh G., Baranwal B.P., Kapoor P.S., Fröhlich R. Preparation, X-ray crystallography, and thermal decomposition of some transition metal perchlorate complexes of hexamethylenetetramine // J. Phys. Chem. A. 2008. V. 111. № 50. P. 12972–12976.

21. Trzesowska A., Kruszynski R. The synthesis, crystal structure and thermal studies of a mixed-ligand 1,10-phenanthroline and hexamethylenetetramine complex of lanthanum nitrate. Insight into coordination sphere geometry changes of lanthanide(III) 1,10-phenanthroline complexes // J. Transition Met. Chem. 2007. V. 32. P. 625–633.

22. Nibha, Baranwal B.P., Singh G., Singh C.P., Daniliuc C.G., Soni P.K., Nath Y. Kinetics of thermolysis of lanthanum nitrate with hexamethylenetetramine: Crystal structure, TG–DSC, impact and friction sensitivity studies, Part-96 // J. Mol. Struct. 2014. V. 1076. № 5. P. 539–545.

23. Zhang Y., Li J., Xu H., Hou H., Nishiura M., Imamoto T. Structural and spectroscopic properties of hexamethylenetetramine cobalt(II) complex: [Co(NCS)2(hmt)2(H2O)2][Co(NCS)2(H2O)4]·(H2O) // J. Mol. Struct. 1999. V. 510. № 1-3. P. 191–196.

24. Małecki J.G., Bałanda M., Gron T., Kruszynski R. Molecular, spectroscopic, and magnetic properties of cobalt(II) complexes with heteroaromatic N(O)-donor ligands // J. Struct. Chem. 2012. V. 23. P. 1219–1232.

25. Gao S.-M., Xu Z.-H., Ye L.-W., Su G.-B., Zhuang X.-X. Synthesis, crystal structure and properties of a coordination compound: Ni(C6H12N4)2SO4·4H2O // Chin.J. Struct. Chem. 2015. V. 34. № 11. P. 1682–1688.

26. Cheng Y.-Q., Lv L.-P., Xie J.-W., Wang H.-B., Jin Z.-M. Ammonium trichloro(hexamethylenetetramine)zincate(II) sesquihydrate // J. Acta Cryst. 2006. V. 62. P. 3591–3593.

27. Banerjee A., Maiti P., Chattopadhyay T., Banu K.S., Ghosh M., Suresh E., Zangrando E., Das D. Syntheses and crystal structures of cadmium(II)X2-hexamethylenetetramine (X = Br−/I−/SCN−) coordination polymers having different dimensionality // J. Polyhedron. 2010. V. 29. № 3. P. 951–958.

28. Kokina T.E., Klevtsova R.F., Glinskaya L.A., Larionov S.V. Synthesis and crystal structures of binuclear complexes of cobalt(II) and cadmium(II) diisobutyldithiophosphinates with hexamethylenetetramine // Rus. J. Inorg. Chem. 2010. V. 55. № 1. P. 56–60.

29. Ndifon P.T., Agwara M.O., Paboudam A.G., Yufanyi M., Ngoune J., Galindo A., Alvarez E., Mohamadou A. Synthesis, characterization and crystal structure of a cobalt(II)-hexamethylenetetramine coordination polymer // J. Trans. Met. Chem. 2009. V. 34. № 7. P. 745–750.

30. Goher M.A.S., Saber M.R., Mohamed R.G., Hafez A.K., Mautner F.A Synthesis, spectra, crystal structure and thermal properties of a polymeric 1-D cobalt(II) cyanato complex with hexamethylenetetramine // J. Coord. Chem. 2009. V. 62. № 2. P. 234–241.

31. Lai T.-F., Mak T.S.W. Metal complexes of polycyclic tertiary amines. II. Crystal structure of hexamethylenetetramine-cadmium chloride-water (1/2/5) // Ζ. Kristallogr. 1983. V. 165. P. 105–115.

32. Mautner F.A., Öhrström L., Sodin B., Vicente R. New topology in azide-bridged cobalt(II) complexes: the Weak ferromagnet [Co2(N3)4(hexamethylenetetramine)(H2O)]n // J. Inorg. Chem. 2009. V. 48. № 13. P. 6280–6286.

33. Konar S., Mukherjee P.S., Drew M.G.B., Ribas J., Chaudhuri N.R. Syntheses of two new 1D and 3D networks of Cu(II) and Co(II) using malonate and urotropine as bridging ligands: Crystal structures and magnetic studies // J. Inorg. Chem. 2003. V. 42. № 8. P. 2545–2552.

34. Bartecki A., Burgess J., Kurzak K. Colour of metal compounds. CRC Press, 2000. 100 p.

35. Nagase K., Yokobayashi H., Sone K. Color and structural changes of bis(hexamethylenetetramine) cobalt(II) and nickel(II) complexes in the course of thermal dehydration in solid state // Bull. Chem. Soc. Jpn. 1976. V. 49. P. 1563–1567.

36. Gusev E.A., Dalidovich S.V., Krasovskaya L.I. Investigation of urotropine thermal decomposition reaction in self-generated atmosphere by means of thermal analysis method // Thermochim. Acta. 1985.

37. V. 93. P. 21–24.

For citation:

Golubev D.V., Savinkina E.V., Al-Khazraji A..., Davydova M.N. THERMAL DECOMPOSITION OF UROTROPINE COMPLEXES WITH NICKEL AND COBALT CHLORIDES. Fine Chemical Technologies. 2017;12(2):34-41. (In Russ.)

Views: 286

ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)