Fine Chemical Technologies

Advanced search

Water-soluble magnetic nanoparticles as potential agents for magnetic hyperthermia

Full Text:


Magnetic nanoparticles (MNPs) obtained by two methods - thermal decomposition of iron(V) pentacarbonyl and polyol synthesis - were characterized with the use of dynamic/electrophoretic light scattering and high resolution transmission electron microscopy. The obtained MNPs were tested as potential agents for magnetic hyperthermia by measuring their ability to cause water dispersion heating in an electromagnetic field.

About the Authors

V. K. Khlebnikov
МИТХТ им. М.В. Ломоносова, 119571, Москва, пр-т Вернадского, д. 86; Медицинский центр университета Небраски, США; Университет Лилль 1 – Науки и Технологии

H. M. Vishwasrao
Медицинский центр университета Небраски
United States

M. А. Sokolskaya
Медицинский центр университета Небраски
United States

A. V. Kabanov
Медицинский центр университета Небраски
United States


1. Zhen L., Meng L., Xinjian Y. , Meili Y., Jinsong R., Xiaogang Q. The use of multifunctional magnetic mesoporous core/shell heteronanostructures in a biomolecule separation system // J. Biomaterials. 2011. V. 32. № 21. P. 4683-4690.

2. Gupta R., Bajpai A. Magnetically guided release of ciprofloxacin from superparamagnetic polymer nanocomposites // J. Biomater. Sci. Polym. Ed. 2011. V. 22. № 7. P. 893-918.

3. Hergt R., Hiergeist R., Hilger I., Kaiser W. A., Lapatnikov Y., Margel S., Richter U. Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia // J. Magnetism & Magnetic Materials. 2003. V. 270. № 3. P. 345-357.

4. Haacke E.M., Cheng Norman Y.C., House M., Liu Q., Neelavalli J., Ogg R. J., Khan A., Ayaz M., Kirsch W., Obenaus A. Imaging iron stores in the brain using magnetic resonance imaging // J. Magnetic Resonance Imaging. 2005. V. 23. № 1. P. 1-25.

5. Fras L., Stana-Kleinschek K., Ribitsch V., Sfiligoj-Smole M., Kreze T. Quantitative determination of carboxylic groups in cellulose by complexometric titration // J. Lenzinger Berichte. 2005. V. 81. P. 80-88.

6. Park J., Lee E., Hwang N., Kang M., Kim S., Hwang Y., Park J., Noh H., Kim J., Park J., Hyeon T. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles // J. Angew. Chem. Int. Ed. 2005. V. 44. № 19. P. 2872-2877.

7. Cai W., Wan J. Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols // J. Colloid & Interface Sci. 2007. V. 305. № 2. P. 366-370.


9. Gonzales-Weimuller M., Zeisberger M., Krishnan K. M. Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia // J. Magnetism & Magnetic Materials. 2009. V. 321. № 13. P. 1947-1950.

10. Purushotham S., Ramanujan R. V. Modeling the performance of magnetic nanoparticles in multimodal cancer therapy // J. Appl. Physics. 2010. № 107. P. 113701-113709.

11. Mornet S., Vasseur S., Grasset F., Veverka P., Goglio G., Demourgues A., Portier J., Pollert E., Duguet E. Magnetic nanoparticle design for medical applications // J. Progress in Solid State Chemistry. 2006. V. 34. № 2-4. P. 237-247.

12. Spratt J. S., Adcock R. A., Muskovin M., Sherrill W., McKeown J. Clinical delivery system for intraperitoneal hyperthermic chemotherapy // J. Cancer Res. 1980. № 40. P. 256.

For citation:

Khlebnikov V.K., Vishwasrao H.M., Sokolskaya M.А., Kabanov A.V. Water-soluble magnetic nanoparticles as potential agents for magnetic hyperthermia. Fine Chemical Technologies. 2012;7(1):64-68. (In Russ.)

Views: 47

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)