Fine Chemical Technologies

Advanced search

From lipid analysis to lipidomics

Full Text:


This review provides information on the existing methods of lipid analysis. We describe the methods of extraction, separation and quantitative analysis of lipids, which include both well-known techniques and recent advances in analytical chemistry of lipid analysis.

About the Authors

V. A. Akmurzina
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation

A. A. Selishcheva
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation

V. I. Shvets
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


1. Lipid Analysis. Isolation, Separation, Identification and Structural Analysis of Lipids / W.W. Christie, X. Han (Eds.). – The Oily Press, 2003. 446 p.

2. Fahy E., Subramaniam S., Brown H.A. A comprehensive classification system for lipids // J. Lipid Res. 2005. V. 46. Р. 839–861.

3. Orešič M., Hänninen V.A., Vidal-Puig A. Lipidomics: A new window to biomedical frontiers // Trends in Biotechnology. 2008. V. 26. Р. 647–652.

4. Brown H.A., Gutowski S., Moomaw C.R., Slaughter C. ADP ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity // Cell. 1993. V. 75. Р. 1137–1144.

5. Singer W.D., Brown H.A., Sternweis P.C. Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D // Annu. Rev. Biochem. 1997. V. 66. Р. 475–509.

6. Wing M., Bourdon D.M., Harden T.K. PLC-ε: A shared effector protein in Ras-, Rho-, and Gαβγ-mediated signaling // Mol. Interv. 2003. V. 3. Р. 273–280.

7. Mills G.B., Moolenaar W.H. The emerging role of lysophosphatidic acid in cancer // Nat. Rev. Cancer. 2003. V. 3. Р. 3582–5391.

8. Franke T.F., Kaplan D.R., Cantley L.C., Toker A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate // Science. 1997. V. 275. Р. 665–668.

9. Christie W.W. Preparation of lipid extracts from tissues // Adv. Lipid Methodol. 1993. V. 2. Р. 195–213.

10. Folch J., Ascoli I., Lees M. Preparation of lipid extracts from brain tissue // J. Biol. Chem. 1951. V. 191. Р. 833–841.

11. Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification // Biochem. Physiol. 1959. V. 37. Р. 911–917.

12. Lin J.T., Liu D.Y., Yang M.H. Ethyl acetate/ethyl alcohol mixtures as an alternative to Folch reagent for extracting animal lipids // J. Agric. Food Chem. 2004. V. 52. Р. 4984–4986.

13. Matyash V., Liebisch G., Kurzchalia T.V. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics // J. Lipid Res. 2008. V. 49. Р.1137-1146.

14. Kim H.Y., Salem Jr.N. Separation of lipid classes by solid phase extraction // J. Lipid Res. 1990. V. 31. Р. 2285–2289.

15. Ruiz-Gutierrez V., Perez-Camino M.C. Update on solid-phase extraction for the analysis of lipid classes and related compounds // J. Chromatogr. A. 2000. V. 885. Р. 321–341.

16. Isaac G. Development of enhanced analytical methodology for lipid analysis from sampling to detection. A targeted lipidomics approach: thesis. – Sweden, Uppsala University, 2005. 230 p.

17. Han X., Yang J., Cheng H. Toward fingerprinting cellular lipidomes directly from biological samples by two-dimensional electrospray ionization mass spectrometry // Anal. Biochem. 2004. V. 330. Р. 317–331.

18. Halkina T., Sherma J. Determination of sterols and fatty acids in prostate health dietary supplements by silica gel high performance thin layer chromatography with visible mode densitometry // J. Liq. Chromatogr. Relat. Technol. 2007. V. 30. Р. 2329–2335.

19. Christie W.W. Gas Chromatography and Lipids. A Practical Guide. – The Oily Press, 1989. 191 p.

20. Mossoba M.M., Adam M., Lee T. Rapid determination of total trans fat content – an attenuated total reflection infrared spectroscopy international collaborative study // J. AOAC Int. 2001. V. 84. Р. 1144–1150.

21. Mondello L., Casilli A., Tranchida P.Q. Evaluation of fast gas chromatography and gas chromato-graphy-mass spectrometry in the analysis of lipids // J. Chromatogr. A. 2004. V. 1035. Р. 237–247.

22. Bondia-Pons I., Castellote A.I., Lopez-Sabater M.C. Comparison of conventional and fast gas chromatography in human plasma fatty acid determination // J. Chromatogr. B. 2004. V. 809. Р. 339–344.

23. Mossoba M.M., McDonald R.E., Yurawecz M.P. Application of on-line capillary GC-FTIR spectroscopy to lipid analysis // Eur. J. Lipid Sci. Technol. 2001. V. 103. Р. 826–830.

24. Lin J.T. HPLC separation of acyl lipid classes // J. Liq. Chromatogr. Relat. Technol. 2007. V. 30. Р. 2005.

25. Schaefer A., Kuchler T., Simat T.J. Migration of lubricants from food packagings. Screening for lipid classes and quantitative estimation using normal-phase liquid chromatographic separation with evaporative light scattering detection // J. Chromatogr. A. 2003. V. 1017. Р. 107–116.

26. Nikolova-Damyanova B., Momchilova S. Silver ion HPLC for the analysis of positionally isomeric fatty acids // J. Liq. Chromatogr. Relat. Technol. 2002. V. 25. Р. 1947–1965.

27. Peterson B.L., Cummings B.S. A review of chromatographic methods for the assessment of phospholipids in biological samples // Biomed. Chromatogr. 2006. V. 20. Р. 227–243.

28. Rainville P.D., Stumpf C.L., Shockcor J.P., Plumb R.S., Nicholson J.K. Novel application of reversed-phase UPLC-oaTOF-MS for lipid analysis in complex biological mixtures: A new tool for lipidomics // Proteome Res. 2007. V. 4. Р. 552–558.

29. Perona J.S., Ruiz-Gutierrez V. Simultaneous determination of molecular species of monoacyl-glycerols, diacylglycerols and triacylglycerols in human very-low-density lipoproteins by reversed-phase liquid chromatography // J. Chromatogr. B. 2003. V. 785. Р. 89–99.

30. Moreau R. The analysis of lipids via HPLC with a charged aerosol detector // Lipids. 2006. V. 41. Р. 727–734.

31. Mondello L., Tranchida P., Dugo P., Dugo G. Comprehensive two-dimensional gas chromate-graphy-mass spectrometry: A review // Mass Spectrom Rev. 2008. V. 27. Р. 101–124.

32. Lesellier E. Analysis of non-saponifiable lipids by super-/subcritical-fluid chromatography // J. Chromatogr. A. 2001. V. 936. Р. 201–214.

33. Lin J.T. HPLC of Acyl Lipids. – HNB Publishing, 2005. 576 p.

34. Gao F., Dong J., Li W. Separation of phospholipids by capillary zone electrophoresis with indirect ultraviolet detection // J. Chromatogr. A. 2006. V. 1130. Р. 259–264.

35. Chen Y.L., Xu Y. Determination of lysophosphatidic acids by capillary electrophoresis with indirect ultraviolet detection // J. Chromatogr. B. 2001. V. 753. Р. 355–363.

36. Mofaddel N., Desbene-Monvernay A. Fatty acid analysis using capillary electrophoresis // Analysis. 1999. V. 27. Р. 120–124.

37. Han H., Gross R.W. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: A bridge to lipidomics // J. Lipid Res. 2003. V. 44. Р. 1071–1079.

38. Liebisch G., Binder M., Schifferer R. Glycerophospholipid identification and quantitation by electrospray ionization mass spectrometry // Methods in Enzymol. 2007. V. 432. P. 21–57.

39. Ivanova P.T., Milne S.B., Forrester J. S. LIPID arrays: New tools in the understanding of membrane dynamics and lipid signaling // Mol. Interv. 2004. V. 4. № 2. P. 86–96.

40. Biedermann W., Luercker E., Poerschmann J. Structural characterization of some fatty acids from the brain as biomarkers of BSE risk material // Anal. Bioanal. Chem. 2004. V. 379. Р. 1031–1038.

41. Keller S., Jahreis G. Determination of underivatised sterols and bile acid trimethyl silyl ether methyl esters by gas chromatography-mass spectrometry-single ion monitoring in fasces // J. Chromatogr. B. 2004. V. 813. Р. 199–207.

42. Roessner U., Willmitzer L., Fernie A.R. High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies // Plant Physiol. 2001. V. 127. Р. 749–764.

43. Winder C.L., Dunn W.B., Schuler S. Global metabolic profiling of Escherichia coli cultures: An evaluation of methods for quenching and extraction of intracellular metabolites // Anal. Chem. 2008. V. 80. Р. 2939–2948.

44. Kayganich-Harrison K.A., Murphy R.C. Characterization of chain-shortened oxidized glycero-phosphocholine lipids using fast atom bombardment and tandem mass spectrometry // Anal. Biochem. 1994. V. 221. Р. 16–24.

45. Milne S., Ivanova P., Forrester J. Lipidomics: An analysis of cellular lipids by ESI-MS // Methods. 2006. V. 39. Р. 92–103.

46. Han X., Gross R.W. Structural determination of picomole amounts of phospholipids via electrospray ionization tandem mass spectrometry // J. Am. Soc. Mass Spectrom. 1995. V. 6. Р. 1202–1210.

47. Smith P.B., Snyder A.P., Harden C.S. Characterization of bacterial phospholipids by electrospray ionization mass spectrometry // Anal. Chem. 1995. V. 67. Р. 1824–1830.

48. Han X., Gross R.W. Quantitative analysis and molecular species fingerprinting of triacylglyceride molecular species directly from lipid extracts of biological samples by electrospray ionization tandem mass spectrometry // Anal. Biochem. 2001. V. 295. Р. 88–100.

49. Byrdwell W.C. Atmospheric pressure chemical ionization mass spectrometry for analysis of lipids // Lipids. 2001. V. 36. Р. 327–346.

50. Rezanka T., Sigler K. Structural analysis of a polysaccharide from Chlorella kessleri by means of gas chromatography-mass spectrometry of its saccharide alditols // Curr. Anal. Chem. 2007. V. 52. Р. 246–252.

51. Cai S.S., Syage J.A. Comparison of atmospheric pressure photoionization, atmospheric pressure chemical ionization, and electrospray ionization mass spectrometry for analysis of lipids // Anal. Chem. 2006. V. 78. Р. 1191–1199.

52. Schiller J., Suss R., Arnhold J. Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research // Prog. Lipid Res. 2004. V. 43. Р. 449.

53. Schiller J., Suss R., Fuchs B. MALDI-TOF MS in lipidomics // Front. Biosci. 2007. V. 12. Р. 2568–2579.

54. Murphy R.C., Fiedler J., Hevko J. Analysis of nonvolatile lipids by mass spectrometry // Chem. Rev. 2001. V. 110. Р. 479–526.

55. Bernhard W., Pynn C.J., Jaworski A., Rau G.A., Hohlfeld J.M., Freihorst J., Poets C.F., Stoll D., Postle A.D. Mass spectrometric analysis of surfactant metabolism in human volunteers using deuteriated choline // Am. J. Respir. Crit. Care Med. 2004. V. 170. P. 54–58.

56. Postle A.D., Hunt A.N. Dynamic lipidomics with stable isotope labeling // J. Chromatogr. B. 2009. V. 877. P. 2716–2721.

57. Monton M.R., Soga T. Metabolome analysis by capillary electrophoresis-mass spectrometry // J. Chromatogr. A. 2007. V. 1168. Р. 237–246.

58. Zamfir A., Vukelic Z., Peter-Katalinic J. A capillary electrophoresis and off-line capillary electro-phoresis/electrospray ionization-quadrupole time of flight-tandem mass spectrometry approach for ganglioside analysis // Electrophoresis. 2002. V. 23. Р. 2894–2903.

59. Fetsch D., Havel J. Capillary zone electrophoresis for the separation and characterization of humic acids // J. Chromatogr. A. 1998. V. 802. Р. 189–202.

60. Klampfl C.W. Review coupling of capillary electrochromatography to mass spectrometry // J. Chromatogr. A. 2004. V. 1044. Р. 131–144.

61. Diehl B.W.K. Multinuclear high resolution NMR spectroscopy / In: Lipid Analysis of Oils and Fats. – London: Chapman & Hall, 1998. 87 p.

62. Voort F.R., Sedman J., Russin T. Lipid analysis by vibrational spectroscopy // Eur. J. Lipid Sci. Technol. 2001. V. 103. Р. 815–826.

63. Dufour E. Spectroscopic techniques (NMR, infrared and fluorescence) for the determination of lipid composition and structure in dairy products. – Springer, 2006. 240 p.

For citation:

Akmurzina V.A., Selishcheva A.A., Shvets V.I. From lipid analysis to lipidomics. Fine Chemical Technologies. 2012;7(6):3-21. (In Russ.)

Views: 88

ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)