Preview

Fine Chemical Technologies

Advanced search

The electron motion in the practically coulomb field

Full Text:

Abstract

will be added. One can explain the nature of the term by examining the relativistic case. Below the formulas for the radial and angular parts of the wave function were evaluated. The term for the energetic levels of the hydrogen atom for specific quantum numbers was given. We calculated the values of several specific radial functions for different quantum numbers, as well as the values of the radial function at the origin of coordinates and wide apart. A number of mean values for different powers of r was calculated. For the continuous spectrum the radial eigenfunctions were calculated.

About the Authors

D. V. Kalinovsky
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


E. S. Savin
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


References

1. Yang X.L., Guo S.X., Chan F.T., Wong K.W., Ching W.Y., Analytic solution of a two-dimensional hydrogen atom. Nonrelativistic theory // Physical Review A. 1991. V. 43. № 3. Р. 1186–1192.

2. Шифф. Л. Квантовая механика. М.: ИЛ, 1959. 473 c.

3. Ахиезер А.И., Берестецкий В.Б. Квантовая электродинамика. М.: Наука, 1969. 432 c.

4. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. М.: Изд-во физ.-мат. лит-ры, 1963. 702 с.

5. Лебедев Н.Н. Специальные функции и их приложения. М.: Изд-во физ.-мат. лит-ры, 1963. 358 с.


Review

For citations:


Kalinovsky D.V., Savin E.S. The electron motion in the practically coulomb field. Fine Chemical Technologies. 2013;8(2):86-89. (In Russ.)

Views: 254


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)