Preview

Fine Chemical Technologies

Advanced search

Linear relationship between 13C NMR chemical shifts and electronic chemical potential, chemical hardness and electrophilicity index of allylic Pd(II) complexes

Full Text:

Abstract

In the frame of conceptual density functional theory the chemical shifts values (δ) of signals in 13C NMR spectra of substituted allylic Pd(II) complexes were calculated considering equilibrium population of conformers in aqueous solution. On the basis that δ values of signals of unsubstituted terminal carbons C3 are in linear relationship with charge on C3, Pd-C3 bond length, electron chemical potential μ, hardness η and electrophilicity index ω as well, 13C NMR chemical shifts for C3 can be used as descriptors of chemical reactivity of anionic allylic Pd(II) complexes.

About the Authors

Е. М. Evstigneeva
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation
Ya.K. Syrkin Physical Chemistry Department, D.Sc., associate professor


I. E. Sokolov
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation
Ya.K. Syrkin Physical Chemistry Department, student


S. . Yagubpur
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation
Ya.K. Syrkin Physical Chemistry Department, student


References

1. Verma R.P., Hansch C. Use of 13C Chemical Shift as QSAR/QSPR Descriptor // Chem. Rev. 2011. V. 111. № 3. P. 2865–2899.

2. Armstrong P.B., Dembicer E.A., DesBois A.J., Fitzgerald J.T., Gehrmann J.K., Nelson N.C., Noble A.L., Bunt R.C. Investigation of the Electronic Origin of Asymmetric Induction in Palladium-Catalyzed Allylic Substitutions with Phosphinooxazoline (PHOX) Ligands by Hammett and Swain-Lupton Analysis of the 13C NMR Chemical Shifts of the (p-Allyl)palladium Intermediates // Organometallics. 2012. V. 31. № 19. P. 6933–6946.

3. Lodewyk M.W., Siebert M.R., Tantillo D.J. Computational Prediction of 1H and 13C Chemical Shifts: A Useful Tool for Natural Product, Mechanistic, and Synthetic Organic Chemistry // Chem. Rev. 2012. V. 112. № 3. P. 1839–1862.

4. Evstigneeva E.M., Elhussien M.E.-H., Flid V.R. Electronic effects of substituent in syn and anti isomers of [(1-R-η3-C3H4)PdCl2]- anions: comparative DFT study // Butlerov Communications. 2011. V. 25. № 5. P. 23–37.

5. Evstigneeva E.M., Flid V.R., Bobkova E.N. Effects of substituents in the cationic and anionic η3-allyl palladium complexes according to data of 13С NMR spectroscopy and quantum chemical calculations // Russ. Chem. Bull. 2009. № 3. P. 551–558.

6. Parr R.G., Yang W. Density-Functional Theory of Atoms and Molecules. Oxford: Oxford University Press, 1989. 352 p.

7. Chemical reactivity theory: a density functional view / Ed. P.K. Chattaraj. N.Y.: CRC Press, 2009. 610 p.

8. Frish M. etc. GAUSSIAN 03, Revision B.03, Gaussian, Pittsburg, PA, 2003.

9. Becke A.D. Density-functional thermochemistry. III. The role of exact exchange // J. Chem. Phys. 1993. V. 98. № 7. P. 5648–5653.

10. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density // Phys. Rev. B. 1988. V. 37. № 1. P. 785–789.

11. Hansch C., Leo A., Taft R.W. A survey of Hammett substituent constants and resonance and field parameters // Chem. Rev. 1991. V. 91. № 2. P. 165–195.

12. Sieh D., Schlimm M., Andernach L., Angersbach F., Nückel S., Schöffel J., Šušnjar N., Burger P. Metal–Ligand Electron Transfer in 4d and 5d Group 9 Transition Metal Complexes with Pyridine, Diimine Ligands // Eur. J. Inorg. Chem. 2012. V. 2012. № 3. P. 444–462.


For citation:


Evstigneeva Е.М., Sokolov I.E., Yagubpur S... Linear relationship between 13C NMR chemical shifts and electronic chemical potential, chemical hardness and electrophilicity index of allylic Pd(II) complexes. Fine Chemical Technologies. 2013;8(3):58-62. (In Russ.)

Views: 81


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)