Preview

Fine Chemical Technologies

Advanced search

Traditional models chemical kinetics and potentially streaming equation for a closed system

Abstract

The paper analyzes the communication matrix coefficients reagiruemostey simple subsystems and the coefficient matrix formed independent subsystems simple reagents chemically reacting systems with chemical kinetics. He showed that the coefficient matrix and the matrix of coefficients reagiruemostey formed independent reagents simple subsystems have the following Items supplied: symmetry; reagiruemostey coefficient matrix in the second subsystem is the sum of simple and symmetric nonnegative definite matrices, at least one of which is positive definite, due to different mechanisms of chemical reactions. Also property of these matrices simple subsystems as matrices susceptibility is positive definiteness of these matrices. The symmetry of these positive- definite matrices follows from the principle of independence stages kinetic mechanism of chemical transformations. Under such constraints matrix corresponds to the general features of the kinetic mechanism of chemical transformations. The paper shows that when comparing potentially streaming method of modeling chemical reactions in a closed system of chemically reacting with traditional chemical kinetics of these two methods are equivalent. Proposed potentially streaming method is preferred in the absence of the detailed mechanism of complex chemically reacting systems. If the total kinetic information is not available, it is preferable to use the proposed potentially streaming method agreed with the non-equilibrium thermodynamics.

About the Authors

V. I. Bykov
N.M. Emanuel Institute of Biochemical Physics RAS, Moscow, 119991
Russian Federation


I. E. Starostin
N.M. Emanuel Institute of Biochemical Physics RAS, Moscow, 119991
Russian Federation


References

1. Эммануэль Н.М., Кнорре Д.Г. Курс химической кинетики. М.: Высшая школа, 1984. 410 с.

2. Димитров В.И. Простая кинетика. Новосибирск: Наука, 1982. 320 с.

3. Красноперов Л.Н. Химическая кинетика. Новосибирск: Новосиб. ун-т, 1988. 92 с.

4. Быков В.И. Моделирование критических явлений в химической кинетике. Серия Синэнергетика: от прошлого к будущему / Предисл. и послесл. Г.Г. Малинецкого. Изд. 2-е, испр. и доп. М.: КомКнига, 2006. 320 с.

5. Пармон В.Н. Лекции по термодинамике неравновесных процессов для химиков : учебн. пособие. Новосибирск: НГУ, 2004. 290 с.

6. Старостин И.Е. Потенциально-потоковые (квазиградиентные) имитационные математические модели неравновесных процессов // Материалы XIII Всерос. семинара «Моделирование неравновесных систем». Красноярск: Изд-во СФУ, 2010. С. 187-192.

7. Халютин С.П., Старостин И.Е. Потенциально-потоковый метод моделирования неравновесных процессов // Изв. вузов. Поволжский регион. Физ.-мат. науки. Пенза: Издательство ПГУ, 2012. Т. 2. С. 25-35.

8. Быков В.И., Старостин И.Е. Квазиградиентные модели динамики закрытых химических систем // Хим. физика. 2012. Т. 31. № 1. С. 38-42.

9. Быков В.И., Старостин И.Е. Квазиградиентные модели динамики сложных химических превращений в закрытых системах // В кн.: Сложные системы. М.: Издательство МГУ, 2012. С. 59-77.


Review

For citations:


Bykov V.I., Starostin I.E. Traditional models chemical kinetics and potentially streaming equation for a closed system. Fine Chemical Technologies. 2014;9(2):80-86. (In Russ.)

Views: 355


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)