Fine Chemical Technologies

Advanced search

Pegylation, as method of production prolonged forms of biopharmaceutical drugs (pegylated granulocyte colony-stimulating factor as case of study)

Full Text:


By now the pegylation of biologically active molecules including proteins with an inert hydrophilic polymer polyethylene glycol (PEG) is an important area in the new generation of prolonged-action pharmaceutical preparations. The conjugated molecules usually have an improved pharmacokinetic profile, including reduced renal clearance, additional protection from the proteolytic enzymes and reduced immunogenicity, thus preserving the in vivo activity of the native preparation in the human body for a longer time. This review is focused on the example of the pegylation of recombinant human granulocyte colony-stimulating factor (G-CSF) and gives the opportunity to have a look at different ways of pegylation and the mechanism of this reaction. Besides, the review describes the different types of reactive PEG for the specific conjugation to biological molecules and benefits and disadvantages of these reagents.

About the Authors

I. А. Puchkov
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571; Russian Pharmaceutical Company «Masterclone», Moscow, 119019
Russian Federation

D. I. Bairamashvili
Test Biotechnological Production of the Genetically Engineered Preparations of M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117997
Russian Federation

V. I. Shvets
МИТХТ им. М.В. Ломоносова, 119571, Москва, пр-т Вернадского, д. 86
Russian Federation


1. Freyer G., Ligneau B., Trillet-Lenoir V. Colony-stimulating factors in the prevention of solid tumors induced by chemotherapy in patients with febrile neutropenia // Int. J. Antimicrob. Agents. 1998. V. 10. P. 3-9.

2. Morstyn G., Burgess A.W. Hemopoietic growth factors: A review // Cancer Res. 1988. V. 48. P. 5624-5637.

3. Molineux G. Granulocyte colony-stimulating factors // Cancer Treatment & Res. 2011. V. 157. P. 33-53.

4. Asano S. Human granulocyte colony-stimulating factor: Its basic aspects and clinical applications // Am. J. Pediatr. Hematol. Oncol. 1991. V. 13. P. 400-413.

5. Herman A.C., Boone T.C., Lu H.S. Characterization, formulation, and stability of Neupogen (Filgrastim), a recombinant human granulocyte-colony stimulating factor // Pharm. Biotechnol. 1996. V. 9. P. 303-328.

6. Khalilzadeh R., Mohammadian-Mosaabadi J., Bahrami A., Nazak-Tabbar A., Nasiri-Khalili M.A., Amouheidari A. Process development for production of human granulocyte-colony stimulating factor by high cell density cultivation of recombinant Escherichia coli // J. Ind. Microbiol. Biotechnol. 2008. V. 35. P. 1643-1650.

7. Molineux G. Granulocyte colony-stimulating factor / In: Hematopoietic Growth Factors in Oncology: Basic Science and Clinical Therapeutics / Ed. G. Morstyn, M. Foote, G. J. Lieschke. N.Y., Totowa: Humana Press Inc., 2004. P. 83-97.

8. Vanz A.L., Renard G., Palma M.S., Chies J.M., Dalmora S.L., Basso L.A., Santos D.S. Human granulocyte colony stimulating factor (hG-CSF): Cloning, overexpression, purification and characterization // Microb. Cell Fact. 2008. V. 7. P. 1-12.

9. Gervais V., Zerial A., Oschkinat H. NMR investigations of the role of the sugar moiety in glycosylated recombinant human granulocyte-colony-stimulating factor // Eur. J. Biochem. 1997. V. 247. P. 386-395.

10. Wingfield P., Benedict R., Turcatti G., Allet B., Mermod J.-J., DeLamarter J., Simona M.G., Rose K. Characterization of recombinant-derived granulocyte-colony stimulating factor (G-CSF) // Biochem. J. 1988. V. 256. P. 213-218.

11. Hill C.P., Osslund T.D., Eisenberg D. The structure of granulocyte-colony-stimulating factor and its relationship to other growth factors // Proc. Natl. Acad. Sci. USA. 1993. V. 90. P. 5167-5171.

12. Molineux G. The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta) // Curr. Pharm. Des. 2004. V. 10. P. 1235-1244.

13. Wadhwa M., Thorpe R. Haematopoietic growth factors and their therapeutic use // Thromb. Haemost. 2008. V. 99. P. 863-873.

14. Heuser M., Ganser A. Colony-stimulating factors in the management of neutropenia and its complications // Ann. Hematol. 2005. V. 84. P. 697-708.

15. van de Geijn G.J.M., Aarts L.H.J., Erkeland S.J., Prasher J.M., Touw I.P. Granulocyte colony-stimulating factor and its receptor in normal hematopoietic cell development and myeloid disease // Rev. Physiol. Biochem. Pharmacol. 2003. V. 149. P. 53-71.

16. Zalipsky S. Functionalized poly(ethylene glycol) for preparation of biologically relevant conjugates // Bioconjug. Chem. 1995. V. 6. P. 150-165.

17. Veronese F.M., Caliceti P., Schiavon O. Branched and linear poly(ethylene glycol): Influence of the polymer structure on enzymological, pharmacokinetic, and immunological properties of protein conjugates // J. Bioact. Compat. Polym. 1997. V. 12. P. 196-207.

18. Herman S., Hooftman G., Schacht E. Poly(ethylene glycol) with reactive endgroups: I. Modification of proteins // J. Bioact. Compat. Polym. 1995. V. 10. P. 145-186.

19. Knop K., Hoogenboom R., Fischer D., Schubert U.S. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives // Angew. Chem. Int. Ed. Engl. 2010. V. 49. P. 6288-6308.

20. Morpurgo M., Veronese F.M. Conjugates of peptides and proteins to polyethylene glycols / In: Methods in Molecular Biology: Bioconjugation Protocols: Strategies and Methods / Ed. C.M. Niemeyer. N.Y, Totowa: Humana Press Inc., 2004. V. 283. P. 45-70.

21. Kang J.S., Deluca P.P., Lee K.C. Emerging PEGylated drugs // Expert Opin. Emerg. Drugs. 2009. V. 14. P. 363-380.

22. Jevsevar S., Kunstelj M., Porekar V.G. PEGylation of therapeutic proteins // Biotechnol. J. 2010. V. 5. P. 113-128.

23. Milla P., Dosio F., Cattel L. PEGylation of proteins and liposomes: A powerful and flexible strategy to improve the drug delivery // Curr. Drug Metab. 2012. V. 13. P. 105-119.

24. Scholz M., Engel C., Apt D., Sankar S.L., Goldstein E., Loeffler M. Pharmacokinetic and pharmacodynamic modelling of the novel human granulocyte colony-stimulating factor derivative Maxy-G34 and pegfilgrastim in rats // Cell Prolif. 2009. V. 42. P. 823-837.

25. Ljung R., Karim F.A., Saxena K., Suzuki T. [et al.]. 40K glycoPEGylated, recombinant FVIIa: 3-month, double-blind, randomized trial of safety, pharmacokinetics, and preliminary efficacy in hemophilia patients with inhibitors // J. Thromb. Haemost. 2013. V. 11. P. 1260-1268.

26. Tiede A., Brand B., Fischer R., Kavakli K. [et al.]. Enhancing the pharmacokinetic properties of recombinant factor VIII: first-in-human trial of glycoPEGylated recombinant factor VIII in patients with hemophilia A // J. Thromb. Haemost. 2013. V. 11. P. 670-678.

27. Collins P.W., Møss J., Knobe K., Groth A., Colberg T., Watson E. Population pharmacokinetic modeling for dose setting of nonacog beta pegol (N9-GP), a glycoPEGylated recombinant factor IX // J. Thromb. Haemost. 2012. V. 10. P. 2305-2312.

28. Sarkissian C.N., Kang T.S., Gámez A., Scriver C.R., Stevens R.C. Evaluation of orally administered PEGylated phenylalanine ammonia lyase in mice for the treatment of phenylketonuria // Mol. Genet. Metab. 2011. V. 104. P. 249-254.

29. Jacobetz M.A., Chan D.S., Neesse A., Bapiro T.E., Cook N., Frese K.K., Feig C., Nakagawa T. [et al.]. Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer // Gut. 2013. V. 62. P. 112-120.

30. Skerra A. Engineered protein scaffolds for molecular recognition // J. Mol. Recognit. 2000. V. 13. P. 167-187.

31. Gebauer M., Skerra A. Engineered protein scaffolds as next-generation antibody therapeutics // Curr. Opin. Chem. Biol. 2009. V. 13. P. 245-255.

32. Ackermann M., Morse B.A., Delventhal V., Carvajal I.M., Konerding M.A. Anti-VEGFR2 and anti-IGF-1R-Adnectins inhibit Ewing's sarcoma A673-xenograft growth and normalize tumor vascular architecture // Angiogenesis. 2012. V. 15. P. 685-695.

33. Cong Y., Pawlisz E., Bryant P., Balan S., Laurine E., Tommasi R. [et al.]. Site-specific PEGylation at histidine tags // Bioconjug. Chem. 2012. V. 23. P. 248-263.

34. Schoonooghe S., Laoui D., Van Ginderachter J.A., Devoogdt N., Lahoutte T., De Baetselier P., Raes G. Novel applications of nanobodies for in vivo bio-imaging of inflamed tissues in inflammatory diseases and cancer // Immunobiology. 2012. V. 217. P. 1266-1272.

35. Huang L., Muyldermans S., Saerens D. Nanobodies®: Proficient tools in diagnostics // Expert Rev. Mol. Diagn. 2010. V. 10. P. 777-785.

36. Sadeqzadeh E., Rahbarizadeh F., Ahmadvand D., Rasaee M.J. [et al.]. Combined MUC1-specific nanobody-tagged PEG-polyethylenimine polyplex targeting and transcriptional targeting of tBid transgene for directed killing of MUC1 over-expressing tumour cells // J. Control. Release. 2011. V. 156. P. 85-91.

37. Vugmeyster Y., Entrican C.A., Joyce A.P., Lawrence-Henderson R.F. [et al.]. Pharmacokinetic, biodistribution, and biophysical profiles of TNF nanobodies conjugated to linear or branched poly(ethylene glycol) // Bioconjug. Chem. 2012. V. 23. P. 1452-1462.

38. Sabar M.F., Kausar S., Zafar A.U. PEG-interferon conjugates: Effects of length and structure of linker // Pak. J. Pharm. Sci. 2013. V. 26. P. 425-430.

39. Onoue S., Matsui T., Kato M., Mizumoto T., Liu B., Liu L. [et al.]. Chemical synthesis and formulation design of a PEGylated vasoactive intestinal peptide derivative with improved metabolic stability // Eur. J. Pharm. Sci. 2013. V. 49. P. 382-389.

40. Mezo A.R., Low S.C., Hoehn T., Palmieri H. PEGylation enhances the therapeutic potential of peptide antagonists of the neonatal Fc receptor, FcRn // Bioorg. Med. Chem. Lett. 2011. V. 21. P. 6332-6335.

41. Kunstelj M., Fidler K., Skrajnar S., Kenig M. [et al]. Cysteine-specific PEGylation of rhG-CSF via selenylsulfide bond // Bioconjug. Chem. 2013. V. 24. P. 889-896.

42. da Silva Freitas D., Mero A., Pasut G. Chemical and enzymatic site specific PEGylation of hGH // Bioconjug. Chem. 2013. V. 24. P. 456-463.

43. Mattos A., de Jager-Krikken A., de Haan M., Beljaars L., Poelstra K. PEGylation of interleukin-10 improves the pharmacokinetic profile and enhances the antifibrotic effectivity in CCl₄-induced fibrogenesis in mice // J. Control. Release. 2012. V. 162. P. 84-91.

44. Tsiourvas D., Sideratou Z., Sterioti N., Papadopoulos A., Nounesis G., Paleos C.M. Insulin complexes with PEGylated basic oligopeptides // J. Colloid. Interface Sci. 2012. V. 384. P. 61-72.

45. Lee L.S., Conover C., Shi C., Whitlow M., Filpula D. Prolonged circulating lives of single-chain Fv proteins conjugated with polyethylene glycol: A comparison of conjugation chemistries and compounds // Bioconjug. Chem. 1999. V. 10. P. 973-981.

46. Mohs A.M., Zong Y., Guo J., Parker D.L., Lu Z.R. PEG-g-poly(GdDTPA-co-L-cystine): Effect of PEG chain length on in vivo contrast enhancement in MRI // Biomacromolecules. 2005. V. 6. P. 2305-2311.

47. Kaminskas L.M., Boyd B.J., Karellas P., Krippner G.Y., Lessene R., Kelly B., Porter C.J. The impact of molecular weight and PEG chain length on the systemic pharmacokinetics of PEGylated poly L-lysine dendrimers // Mol. Pharm. 2008. V. 5. P. 449-463.

48. Pasut G., Veronese F.M. PEG conjugates in clinical development or use as anticancer agents: An overview // Adv. Drug Deliv. Rev. 2009. V. 61. P. 1177-1188.

49. Caliceti P., Veronese F.M. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates // Adv. Drug Deliv. Rev. 2003. V. 55. P. 1261-1277.

50. Noureddin M., Ghany M.G. Pharmacokinetics and pharmacodynamics of peginterferon and ribavirin: Implications for clinical efficacy in the treatment of chronic hepatitis C // Gastroenterol. Clin. North Am. 2010. V. 39. P. 649-658.

51. Harris J.M., Martin N.E., Modi M. Pegylation: A novel process for modifying pharmacokinetics // Clin. Pharmacokinet. 2001. V. 40. P. 539-551.

52. González-Valdez J., Rito-Palomares M., Benavides J. Advances and trends in the design, analysis, and characterization of polymer-protein conjugates for "PEGylaided" bioprocesses // Anal. Bioanal. Chem. 2012. V. 403. P. 2225-2235.

53. Nojima Y., Suzuki Y., Yoshida K., Abe F., Shiga T., Takeuchi T. [et al]. Lactoferrin conjugated with 40-kDa branched poly(ethylene glycol) has an improved circulating half-life // Pharm. Res. 2009. V. 26. P. 2125-2132.

54. Veronese F.M., Mero A. The impact of PEGylation on biological therapies // BioDrugs. 2008. V. 22. P. 315-329.

55. Fee C.J. Size comparison between proteins PEGylated with branched and linear poly(ethylene glycol) molecules // Biotechnol. Bioeng. 2007. V. 98. P. 725-731.

56. Hamidi M., Azadi A., Rafiei P. Pharmacokinetic consequences of pegylation // Drug Deliv. 2006. V. 13. P. 399-409.

57. Gokarn Y.R., McLean M., Laue T.M. Effect of PEGylation on protein hydrodynamics // Mol. Pharm. 2012. V. 9. P. 762-773.

58. Gaberc-Porekar V., Zore I., Podobnik B., Menart V. Obstacles and pitfalls in the PEGylation of therapeutic proteins // Curr. Opin. Drug Discov. Devel. 2008. V. 11. P. 242-250.

59. Bailon P., Won C.Y. PEG-modified biopharmaceuticals // Expert Opin. Drug Deliv. 2009. V. 6. P. 1-16.

60. Fee C.J., Van Alstine J.M. PEG-proteins: Reaction engineering and separation issues // Chem. Eng. Sci. 2006. V. 61. P. 924-939.

61. Roberts M.J., Harris J.M. Attachment of degradable poly(ethylene glycol) to proteins has the potential to increase therapeutic efficacy // J. Pharm. Sci. 1998. V. 87. P. 1440-1445.

62. Fishburn C.S. The pharmacology of PEGylation: Balancing PD with PK to generate novel therapeutics // J. Pharm. Sci. 2008. V. 97. P. 4167-4183.

63. Pasut G., Veronese F.M. PEGylation for improving the effectiveness of therapeutic biomolecules // Drugs Today (Barc.). 2009. V. 45. P. 687-695.

64. Harris J.M., Chess R.B. Effect of pegylation on pharmaceuticals // Nat. Rev. Drug Discov. 2003. V. 2. P. 214-221.

65. Bailon P., Berthold W. Polyethylene glycol-conjugated pharmaceutical proteins // Pharm. Sci. Technol. Today. 1998. V. 1. P. 352-356.

66. Zhang C., Yang X.L., Yuan Y.H., Pu J., Liao F. Site-specific PEGylation of therapeutic proteins via optimization of both accessible reactive amino acid residues and PEG derivatives // BioDrugs. 2012. V. 26. P. 209-215.

67. Larson R.S., Menard V., Jacobs H., Kim S.W. Physicochemical characterization of poly(ethylene glycol)-modified anti-GAD antibodies // Bioconjug. Chem. 2001. V. 12. P. 861-869.

68. Bonora G.M., Drioli S. Reactive PEGs for protein conjugation // In: PEGylated Protein Drugs: Basic Science and Clinical Applications / Ed. F.M. Veronese. Switzeland: Birkhäuser Verlag, 2009. P. 33-45.

69. Hooftman G., Herman S., Schacht E. Poly(ethylene glycol)s with reactive endgroups. II. Practical consideration for the preparation of protein-PEG conjugates // J. Bioact. Compat. Polym. 1996. V. 11. P. 135-159.

70. Fee C.J., Van Alstine J.M. Purification of pegylated proteins // Methods Biochem. Anal. 2011. V. 54. P. 339-362.

71. Hershfield M.S., Chaffee S., Koro-Johnson L., Mary A., Smith A.A., Short S.A. Use of site-directed mutagenesis to enhance the epitope-shielding effect of covalent modification of proteins with polyethylene glycol // Proc. Natl. Acad. Sci. USA. 1991. V. 88. P. 7185-7189.

72. Wylie D.C., Voloch M., Lee S., Liu Y.H., Cannon-Carlson S., Cutler C. [et al.]. Carboxy-alkylated histidine is a pH-dependent product of pegylation with SC-PEG // Pharm. Res. 2001. V. 18. P. 1354-1360.

73. Lee J.I., Eisenberg S.P., Rosendahl M.S., Chlipala E.A., Brown J.D. [et al.]. Site-specific PEGylation enhances the pharmacokinetic properties and antitumor activity of interferon Beta-1b // J. Interferon Cytokine Res. 2013. V. 33. P. 769-777.

74. Pasut G., Veronese F.M. State of the art in PEGylation: The great versatility achieved after forty years of research // J. Control. Release. 2012. V. 161. P. 461-472.

75. Bell S.J., Fam C.M., Chlipala E.A., Carlson S.J., Lee J.I. [et al.]. Enhanced circulating half-life and antitumor activity of a site-specific pegylated interferon-alpha protein therapeutic // Bioconjug. Chem. 2008. V. 19. P. 299-305.

76. Gaertner H.F., Offord R.E. Site-specific attachment of functionalized poly(ethylene glycol) to the amino terminus of proteins // Bioconjug. Chem. 1996. V. 7. P. 38-44.

77. Wu H., Li J., Zhang Q., Yan X., Guo L. [et al]. A novel small Odorranalectin-bearing cubosomes: Preparation, brain delivery and pharmacodynamic study on amyloid-β₂₅₋₃₅-treated rats following intranasal administration // Eur. J. Pharm. Biopharm. 2012. V. 80. P. 368-378.

78. Goodson R.J., Katre N.V. Site-directed pegylation of recombinant interleukin-2 at its glycosylation site // Biotechnology. 1990. V. 8. P. 343-346.

79. Woghiren C., Sharma B., Stein S. Protected thiol-polyethylene glycol: A new activated polymer for reversible protein modification // Bioconjug. Chem. 1993. V. 4. P. 314-318.

80. Pepinsky R.B., Shapiro R.I., Wang S., Chakraborty A. Long-acting forms of Sonic hedgehog with improved pharmacokinetic and pharmacodynamic properties are efficacious in a nerve injury model // J. Pharm. Sci. 2002. V. 91. P. 371-387.

81. Morpurgo M., Veronese F.M., Kachensky D., Harris J.M. Preparation and characterization of poly(ethylene glycol) vinyl sulfone // Bioconjug. Chem. 1996. V. 7. P. 363-368.

82. Balan S., Choi J.W., Godwin A., Teo I. [et al]. Site-specific PEGylation of protein disulfide bonds using a three-carbon bridge // Bioconjug. Chem. 2007. V. 18. P. 61-76.

83. Brocchini S., Godwin A., Balan S. [et al.]. Disulfide bridge based PEGylation of proteins // Adv. Drug Deliv. Rev. 2008. V. 60. P. 3-12.

84. Scaramuzza S., Tonon G., Olianas A., Messana I., Schrepfer R. [et al.]. A new site-specific monoPEGylated filgrastim derivative prepared by enzymatic conjugation: Production and physicochemical characterization // J. Control. Release. 2012. V. 164. P. 355-363.

85. Zhao X., Shaw A.C., Wang J., Chang C.C., Deng J., Su J. A novel high-throughput screening method for microbial transglutaminases with high specificity toward Gln141 of human growth hormone // J. Biomol. Screen. 2010. V. 15. P. 206-212.

86. Sato H., Yamamoto K., Hayashi E., Takahara Y. Transglutaminase-mediated dual and site-specific incorporation of poly(ethylene glycol) derivatives into a chimeric interleukin-2 // Bioconjug. Chem. 2000. V. 11. P. 502-509.

87. Wang Y.J., Liu Y.D., Chen J., Hao S.J., Hu T. et al. Efficient preparation and PEGylation of recombinant human non-glycosylated erythropoietin expressed as inclusion body in E. coli // Int. J. Pharm. 2010. V. 386. P. 156-164.

88. Orsatti L., Veronese F.M. An unusual coupling of poly(ethylene glycol) to tyrosine residues in epidermal growth factor // Journal Bioact. Compat. Polym. 1999. V. 14. P. 429-436.

89. Wang Y.S., Youngster S., Bausch J., Zhang R., McNemar C., Wyss D.F. Identification of the major positional isomer of pegylated interferon alpha-2b // Biochemistry. 2000. V. 39. P. 10634-10640.

90. Riordan J.F., Vallee B.L. O-Acetyl tyrosine // Methods of Enzymology. 1972. 1972. P. 500-506.

91. Zalipsky S. Menon-Rudolph S. Hydrazide derivatives of polyethylene glycols and their bio-conjugates / In: Poly(ethylene glycol) Chemistry and Biological Applications / Ed. J.M. Harris, S. Zalipsky. Washington: ACS, 1997. V. 680. P. 318-341.

92. Francis G.E., Fisher D., Delgado C., Malik F., Gardiner A., Neale D. PEGylation of cytokines and other therapeutic proteins and peptides: The importance of biological optimisation of coupling techniques // Int. J. Hematol. 1998. V. 68. P. 1-18.

93. Sakane T., Pardridge W.M. Carboxyl-directed pegylation of brain-derived neurotrophic factor markedly reduces systemic clearance with minimal loss of biologic activity // Pharm. Res. 1997. V. 14. P. 1085-1091.

94. Wysocka M., Lesner A., Popow J., Legowska M., Rolka K. Pegylated fluorescent peptides as substrates of proteolytic enzymes // Protein Pept. Lett. 2012. V. 19. P. 1237-1244.

95. Veronese F.M. Peptide and protein PEGylation: A review of problems and solutions // Biomaterials. 2001. V. 22. P. 405-417.

96. Youn Y.S., Lee K.C. Site-specific PEGylation for high-yield preparation of Lys(21)-amine PEGylated growth hormone-releasing factor (GRF) (1-29) using a GRF(1-29) derivative FMOC-protected at Tyr(1) and Lys(12) // Bioconjug. Chem. 2007. V. 18. P. 500-506.

97. Herold D.A., Keil K., Bruns D.E. Oxidation of polyethylene glycols by alcohol dehydrogenase // Biochem. Pharmacol. 1989. V. 38. P. 73-76.

98. Kawai F. Microbial degradation of polyethers // Appl. Microbiol. Biotechnol. 2002. V. 58. P. 30-38.

99. Eliason J.F. Pegylated cytokines: Potential application in immunotherapy of cancer // BioDrugs. 2001. V. 15. P. 705-711.

100. Veronese F.M., Morpurgo M. Bioconjugation in pharmaceutical chemistry // Il Farmaco. 1999. V. 54. P. 497-516.

101. Giorgi M.E., Ratier L., Agusti R., Frasch A.C., de Lederkremer R.M. Improved bioavailability of inhibitors of Trypanosoma cruzi trans-sialidase: PEGylation of lactose analogs with multiarm polyethyleneglycol // Glycobiology. 2012. V. 22. P. 1363-1373.

102. Miyaji Y., Kasuya Y., Furuta Y., Kurihara A., Takahashi M. [et al.]. Novel comb-shaped PEG modification enhances the osteoclastic inhibitory effect and bone delivery of osteoprotegerin after intravenous administration in ovariectomized rats // Pharm. Res. 2012. V. 29. P. 3143-3155.

103. Ouchi M., Terashima T., Sawamoto M. Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis // Chem. Rev. 2009. V. 109. P. 4963-5050.

104. Filpula D., Zhao H. Releasable PEGylation of proteins with customized linkers // Adv. Drug Deliv. Rev. 2008. V. 60. P. 29-49.

105. Zhao H., Yang K., Martinez A. [et al.]. Linear and branched bicin linkers for releasable PEGylation of macromolecules: Controlled release in vivo and in vitro from mono- and multi-PEGylated proteins // Bioconjug. Chem. 2006. V. 17. P. 341-351.

106. Lee S., Greenwald R.B., McGuire J., Yang K., Shi C. Drug delivery systems employing 1,6-elimination: Releasable poly(ethylene glycol) conjugates of proteins // Bioconjug. Chem. 2001. V. 12. P. 163-169.

107. Filpula D., Yang K., Basu A., Hassan R., Xiang L. [et al.]. Releasable PEGylation of mesothelin targeted immunotoxin SS1P achieves single dosage complete regression of a human carcinoma in mice // Bioconjug. Chem. 2007. V. 18. P. 773-784.

108. Zalipsky S., Qazen M., Walker J.A. 2nd, Mullah N. [et al.]. New detachable poly(ethylene glycol) conjugates: Cysteine-cleavable lipopolymers regenerating natural phospholipid, diacyl phos-phatidylethanolamine // Bioconjug. Chem. 1999. V. 10. P. 703-707.

109. Greenwald R.B., Yang K., Zhao H., Conover C.D., Lee S., Filpula D. Controlled release of proteins from their poly(ethylene glycol) conjugates: Drug delivery systems employing 1,6-elimination // Bioconjug. Chem. 2003. V. 14. P. 395-403.

110. Greenwald R.B., Zhao H., Yang K., Reddy P., Martinez A. A new aliphatic amino prodrug system for the delivery of small molecules and proteins utilizing novel PEG derivatives // J. Med. Chem. 2004. V. 47. P. 726-734.

111. Falchi A., Taddei M. PEG-dichlorotriazine (PEG-DCT): A new soluble polymer-supported scavenger for alcohols, thiols, phosphines, and phosphine oxides // Org. Lett. 2000. V. 2. P. 3429-3431.

112. Srichana T., Suwandecha T. Polyethylene glycol in glinical application and PEGylated drugs / In: Biodegradable Polymers in Clinical Use and Clinical Development / Ed. A.J. Domb, N. Kumar, A. Ezra. John Wiley & Sons, Inc., 2011. P. 451-493.

113. Ross E.A., Branham M.L., Tebbett I.R. High mass clearance of autoantibodies from a murine model of lupus nephritis by immunoadsorption using star-configured polyethylene glycols // J. Biomed. Mater. Res. 2001. V. 55. P. 114-120.

114. Hsu C.W., Olabisi R.M., Olmsted-Davis E.A., Davis A.R., West J.L. Cathepsin K-sensitive poly(ethylene glycol) hydrogels for degradation in response to bone resorption // J. Biomed. Mater. Res. A. 2011. V. 98. P. 53-62.

115. Zalipsky S., Seltzer R., Menon-Rudolph S. Evaluation of a new reagent for covalent attachment of polyethylene glycol to proteins // Biotechnol. Appl. Biochem. 1992. V. 15. P. 100-114.

116. Zhang G., Wang X., Wang Z., Zhang J., Suggs L. A PEGylated fibrin patch for mesenchymal stem cell delivery // Tissue Eng. 2006. V. 12. P. 9-19.

117. Woodward C.A., Kaufman E.N. Enzymatic catalysis in organic solvents: Polyethylene glycol modified hydrogenase retains sulfhydrogenase activity in toluene // Biotechnol. Bioeng. 1996. V. 52. P. 423-428.

118. Vasudev S.S., Ahmad S., Parveen R., Ahmad F.J. [et al]. Formulation of PEG-ylated L-asparaginase loaded poly (lactide-co-glycolide) nanoparticles: Influence of pegylation on enzyme loading, activity and in vitro release // Pharmazie. 2011. V. 66. P. 956-960.

119. Abuchowski A.,Vanes T., Palczuk N.C., Davis F.F. Alteration of immunological properties of bovine serum-albumin by covalent attachment of polyethylene-glycol // J. Biol. Chem. 1977. V. 252. P. 3578-3581.

120. Abuchowski A., McCoy J.R., Palczuk N.C., van Es T., Davis F.F. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase // J. Biol. Chem. 1977. V. 252. P. 3582-3586.

121. Roberts M.J., Bentley M.D., Harris J.M. Chemistry for peptide and protein PEGylation // Adv. Drug Deliv. Rev. 2002. V. 54. P. 459-476.

122. Kaul G., Amiji M. Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery // Pharm. Res. 2002. V. 19. P. 1061-1067.

123. Bergström K., Holmberg K., Safranj A., Hoffman A.S. [et al.]. Reduction of fibrinogen adsorption on PEG-coated polystyrene surfaces // J. Biomed. Mater. Res. 1992. V. 26. P. 779-790.

124. Chen A., Kozak D., Battersby B.J., Forrest R.M. [et al.]. Antifouling surface layers for improved signal-to-noise of particle-based immunoassays // Langmuir. 2009. V. 25. P. 13510-13515.

125. Chamow S.M., Kogan T.P., Venuti M., Gadek T. Modification of CD4 immunoadhesin with mono-methoxypoly(ethylene glycol) aldehyde via reductive alkylation // Bioconjug. Chem. 1994. V. 5. P. 133-140.

126. Kinstler O.B., Brems D.N., Lauren S.L., Paige A.G., Hamburger J.B., Treuheit M.J. Characterization and stability of N-terminally PEGylated rhG-CSF // Pharm. Res. 1996. V. 13. P. 996-1002.

127. Abello N., Kerstjens H.A., Postma D.S., Bischoff R. Selective acylation of primary amines in peptides and proteins // J. Proteome Res. 2007. V. 6. P. 4770-4776.

128. Abuchowski A., Kazo G.M., Verhoest C.R.Jr.,Van Es T. [et al.]. Cancer therapy with chemically modified enzymes. I. Antitumor properties of polyethylene glycol-asparaginase conjugates // Cancer Biochem. Biophys. 1984. V. 7. P. 175-186.

129. Santos L.F., Iglesias A.H., Gozzo F.C. Fragmentation features of intermolecular cross-linked peptides using N-hydroxy- succinimide esters by MALDI- and ESI-MS/MS for use in structural proteomics // J. Mass Spectrom. 2011. V. 46. P. 742-750.

130. Zimmermann J.L., Nicolaus T., Neuert G., Blank K. Thiol-based, site-specific and covalent immobilization of biomolecules for single-molecule experiments // Nat. Protoc. 2010. V. 5. P. 975-985.

131. Schlapak R., Pammer P., Armitage D., Zhu R. [et al.]. Glass surfaces grafted with high-density poly(ethylene glycol) as substrates for DNA oligonucleotide microarrays // Langmuir. 2006. V. 22. P. 277-285.

132. Nathan A., Zalipsky S., Ertel S.I., Agathos S.N. [et al]. Copolymers of lysine and polyethylene glycol: a new family of functionalized drug carriers // Bioconjug. Chem. 1993. V. 4. P. 54-62.

133. Zavareh S., Samandari G. Polyethylene glycol as an epoxy modifier with extremely high toughening effect: Formation of nanoblend morphology // Polymer Engineering & Science. 2013. (

134. Geoghegan K.F. Modification of amino groups / In: Current Protocols in Protein Science. 2001. Chapter 15. Unit 15.2. (

135. Ikegawa S., Kinoshita J., Shimizu M., Tohma M. Radioimmunological characterization of anti lithocholic acid antisera elicited by [C-6] carboxylic acid N-succinimidyl esters as haptenic derivatives // Yakugaku Zasshi: J. Pharmaceut. Soc. Japan. 1989. V. 109. P. 306-311.

136. Kinstler O., Molineux G., Treuheit M., Ladd D. [et al]. Mono-N-terminal poly(ethylene glycol)-protein conjugates // Adv. Drug Deliv. Rev. 2002. V. 54. P. 477-485.

137. Xu H., Kaar J.L., Russell A.J., Wagner W.R. Characterizing the modification of surface proteins with poly(ethylene glycol) to interrupt platelet adhesion // Biomaterials. 2006. V. 27. P. 3125-3135.

138. Harris J.M., Kozlowski A. Polyethylene glycol and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications : US Patent. 1997. 5672662 A (

139. Sartore L., Caliceti P., Schiavon O., Veronese F.M. Enzyme modification by MPEG with an amino acid or peptide as spacer arms // Appl. Biochem. & Biotechnol. 1991. V. 27. P. 45-54.

140. Veronese F.M., Sacca B., De Laureto P.P., Sergi M., Caliceti P., Schiavon O. [et al.]. New PEGs for peptide and protein modification, suitable for identification of the PEGylation site // Bioconjug. Chem. 2001. V. 12. P. 62-70.

141. Veronese F.M., Pasut G. PEGylation, successful approach to drug delivery // Drug Discov. Today. 2005. V. 10. P. 1451-1458.

142. Bentley M.D., Roberts M.J., Harris J.M. Reductive amination using poly(ethylene glycol) acetaldehyde hydrate generated in situ: Applications to chitosan and lysozyme // J. Pharm. Sci. 1998. V. 87. P. 1446-1449.

143. Bentley M.D., Harris J.M., Kozlowski A. Heterobifunctional poly(ethylene glycol) derivatives and methods for their preparation :1999. US Patent. US 6448369 B1. PCT US99/23536. (

144. Ryan S.M., Mantovani G., Wang X., Haddleton D.M. [et al.]. Advances in PEGylation of important biotech molecules: Delivery aspects // Expert Opin. Drug Deliv. 2008. V. 5. P. 371-383.

145. Veronese F.M., Mero A., Caboi F., Sergi M. [et al.]. Site-specific pegylation of G-CSF by reversible denaturation // Bioconjug. Chem. 2007. V. 18. P. 1824-1830.

146. Doherty D.H., Rosendahl M.S., Smith D.J., Hughes J.M. [et al.]. Site-specific PEGylation of engineered cysteine analogues of recombinant human granulocyte-macrophage colony-stimulating factor // Bioconjug. Chem. 2005. V. 16. P. 1291-1298.

147. Rosendahl M.S., Doherty D.H., Smith D.J., Carlson S.J. [et al]. A long-acting, highly potent interferon alpha-2 conjugate created using site-specific PEGylation // Bioconjug. Chem. 2005. V. 16. P. 200-207.

148. Pasut G., Guiotto A., Veronese F.M. Protein, peptide and non-peptide drug PEGylation for therapeutic application // Expert Opin. Ther. Pat. 2004. V. 14. P. 859-894.

149. Shaunak S., Godwin A., Choi J.W., Balan S. [et al.]. Site-specific PEGylation of native disulfide bonds in therapeutic proteins // Nat. Chem. Biol. 2006. V. 2. P. 312-313.

150. Li X.Q., Lei J.D., Su Z.G. [et al]. Comparison of bioactivities of monopegylated rhG-CSF with branched and linear mPEG // Proc. Biochem. 2007. V. 42. P. 1625-1631.

151. Monfardini C., Schiavon O., Caliceti P., Morpurgo M., Harris J.M., Veronese F.M. A branched monomethoxypoly(ethylene glycol) for protein modification // Bioconjug. Chem. 1995. V. 6. P. 62-69.

152. Kamigaito M., Ando T., Sawamoto M. Metal-catalyzed living radical polymerization // Chem. Rev. 2001. V. 101. P. 3689-3746.

153. Lecolley F., Tao L., Mantovani G., Durkin I. A new approach to bioconjugates for proteins and peptides («pegylation») utilising living radical polymerization // Chem. Commun. (Camb.). 2004. V. 18. P. 2026-2027.

154. Jones M.W., Strickland R.A., Schumacher F.F., Caddick S. [et al.]. Polymeric dibromo-maleimides as extremely efficient disulfide bridging bioconjugation and pegylation agents // J. Am. Chem. Soc. 2012. V. 134. P. 1847-1852.

155. Fan X., Lin L., Messersmith P.B. Cell fouling resistance of polymer brushes grafted from ti substrates by surface-initiated polymerization: Effect of ethylene glycol side chain length // Biomacro-molecules. 2006. V. 7. P. 2443-2448.

156. Mantovani G., Lecolley F., Tao L. [et al.]. Design and synthesis of N-maleimido-functionalized hydrophilic polymers via copper-mediated living radical polymerization: A suitable alternative to PEGylation chemistry // J. Am. Chem. Soc. 2005. V. 127. P. 2966-2973.

157. Asayama S., Nogawa M., Takei Y., Akaike T., Maruyama A. Synthesis of novel polyampholyte comb-type copolymers consisting of a poly(L-lysine) backbone and hyaluronic acid side chains for a DNA carrier // Bioconjug. Chem. 1998. V. 9. P. 476-481.

158. Miyaji Y., Kasuya Y., Furuta Y., Kurihara A. Novel comb-shaped PEG modification enhances the osteoclastic inhibitory effect and bone delivery of osteoprotegerin after intravenous administration in ovariectomized rats // Pharm. Res. 2012. V. 29. P. 3143-3155.

159. Ryan S.M., Wang X., Mantovani G., Sayers C.T. Conjugation of salmon calcitonin to a combed-shaped end functionalized poly(poly(ethylene glycol) methyl ether methacrylate) yields a bioactive stable conjugate // J. Control. Release. 2009. V. 135. P. 51-59.

160. Da Pieve C., Blackshaw E., Missailidis S., Perkins A.C. PEGylation and biodistribution of an anti-MUC1 aptamer in MCF-7 tumor-bearing mice // Bioconjug. Chem. 2012. V. 23. P. 1377-1381.

161. Boomer R.M., Lewis S.D., Healy J.M., Kurz M. Conjugation to polyethylene glycol polymer promotes aptamer biodistribution to healthy and inflamed tissues // Oligonucleotides. 2005. V. 15. P. 183-195.

162. Setijadi E., Tao L., Liu J., Jia Z. Biodegradable star polymers functionalized with beta-cyclo-dextrin inclusion complexes // Biomacromolecules. 2009. V. 10. P. 2699-2707.

163. Santi D.V., Schneider E.L., Reid R., Robinson L., Ashley G.W. Predictable and tunable half-life extension of therapeutic agents by controlled chemical release from macromolecular conjugates // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 6211-6216.

164. Asayama S., Maruyama A., Cho C.S., Akaike T. Design of comb-type polyamine copolymers for a novel pH-sensitive DNA carrier // Bioconjug. Chem. 1997. V. 8. P. 833-838.

165. Srividhya M., Preethi S., Gnanamani A., Reddy B.S. Sustained release of protein from poly(ethylene glycol) incorporated amphiphilic comb like polymers // Int. J. Pharm. 2006. V. 326. P. 119-127.

166. Heredia K.L., Bontempo D., Ly T., Byers J.T. [et al.]. In situ preparation of protein-«smart» polymer conjugates with retention of bioactivity // J. Am. Chem. Soc. 2005. V. 127. P. 16955-16960.

167. Bontempo D., Maynard H.D. Streptavidin as a macroinitiator for polymerization: In situ protein-polymer conjugate formation // J. Am. Chem. Soc. 2005. V. 127. P. 6508-6509.

168. Le Droumaguet B., Mantovani G., Haddleton D.M., Velonia K. Formation of giant amphiphiles by post-functionalization of hydrophilic protein-polymer conjugates // J. Mater. Chem. 2007. V. 17. P. 1916-1922.

169. Booth C., Gaspar H.B. Pegademase bovine (PEG-ADA) for the treatment of infants and children with severe combined immunodeficiency (SCID) // Biologics. 2009. V. 3. P. 349-358.

170. Dinndorf P.A., Gootenberg J., Cohen M.H., Keegan P., Pazdur R. FDA drug approval summary: Pegaspargase (oncaspar) for the first-line treatment of children with acute lymphoblastic leukemia (ALL) // Oncologist. 2007. V. 12. P. 991-998.

171. Foster G.R. Pegylated interferons: Chemical and clinical differences (Review article) // Aliment. Pharmacol. Ther. 2004. V. 20. P. 825-830.

172. Foser S., Schacher A., Weyer K.A., Brugger D. Isolation, structural characterization, and anti-viral activity of positional isomers of monopegylated interferon alpha-2a (PEGASYS) // Protein Expr. Purif. 2003. V. 30. P. 78-87.

173. Thankamony G.N., Dunger D.B., Acerini C.L. Pegvisomant: Current and potential novel therapeutic applications // Expert Opin. Biol. Ther. 2009. V. 9. P. 1553-1563.

174. McGahan L. Continuous erythropoietin receptor activator (Mircera) for renal anemia // Issues Emerg. Health Technol. 2008. V. 113. P. 1-6.

175. Jevševar S., Kusterle M., Kenig M. PEGylation of antibody fragments for half-life extension // Methods Mol. Biol. 2012. V. 901. P. 233-246.

176. Khalili H., Godwin A., Choi J.W., Lever R., Brocchini S. Comparative binding of disulfide-bridged PEG-Fabs // Bioconjug. Chem. 2012. V. 23. P. 2262-2277.

177. Rader C. Overview on concepts and applications of Fab antibody fragments // Current Protocols in Protein Science. 2009. Chapter 6. Unit 6.9. (

178. Deeks E.D. Certolizumab pegol: A review of its use in the management of rheumatoid arthritis // Drugs. 2013. V. 73. P. 75-97.

179. Humphreys D.P., Heywood S.P., Henry A., Ait-Lhadj L. [et al.]. Alternative antibody Fab’ fragment PEGylation strategies: Combination of strong reducing agents, disruption of the interchain disulphide bond and disulphide engineering // Protein Eng. Des. Sel. 2007. V. 20. P. 227-234.

180. Top A., Roberts C.J., Kiick K.L. Conformational and aggregation properties of a PEGylated alanine-rich polypeptide // Biomacromolecules. 2011. V. 12. P. 2184-2192.

181. Terpe K. Overview of tag protein fusions: From molecular and biochemical fundamentals to commercial systems // Appl. Microbiol. Biotechnol. 2003. V. 60. P. 523-533.

182. Deiters A., Cropp T.A., Summerer D., Mukherji M., Schultz P.G. Site-specific PEGylation of proteins containing unnatural amino acids // Bioorg. Med. Chem. Lett. 2004. V. 14. P. 5743-5745.

183. Nestor J.J. Jr. The medicinal chemistry of peptides // Curr. Med. Chem. 2009. V. 16. P. 4399-4418.

184. Deiters A., Schultz P.G. In vivo incorporation of an alkyne into proteins in Escherichia coli // Bioorg. Med. Chem. Lett. 2005. V. 15. P. 1521-1524.

185. Cho H., Daniel T., Buechler Y.J., Litzinger D.C., Maio Z. Optimized clinical performance of growth hormone with an expanded genetic code // Proc. Natl. Acad. Sci. USA. 2011. V. 108. P. 9060-9065.

186. Fares F., Guy R., Bar-Ilan A., Felikman Y., Fima E. Designing a long-acting human growth hormone (hGH) by fusing the carboxyl-terminal peptide of human chorionic gonadotropin beta-subunit to the coding sequence of hGH // Endocrinology. 2010. V. 151. P. 4410-4417.

187. Sato H. Enzymatic procedure for site-specific pegylation of proteins // Adv. Drug Deliv. Rev. 2002. V. 54. P. 487-504.

188. Fontana A., Spolaore B., Mero A.,Veronese F.M. Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase // Adv. Drug Deliv. Rev. 2008. V. 60. P. 13-28.

189. DeFrees S., Wang Z.G., Xing R., Scott A.E., Wang J. GlycoPEGylation of recombinant therapeutic proteins produced in Escherichia coli // Glycobiology. 2006. V. 16. P. 833-843.

190. Schjoldager K.T., Clausen H. Site-specific protein O-glycosylation modulates proprotein processing - deciphering specific functions of the large polypeptide GalNAc-transferase gene family // Biochim. Biophys. Acta. 2012. V. 1820. P. 2079-2094.

191. Yu C.C., Kuo Y.Y., Liang C.F., Chien W.T., Wu H.T. Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis // Bioconjug. Chem. 2012. V. 23. P. 714-724.

192. Пучков И.А., Кононова Н.В., Бобрускин А.И., Баирамашвили Д.И., Мартьянов В.А., Шустер А.М. Рекомбинантный гранулоцитарный колониестимулирующий фактор (Филграстим): Оптимизация условий конъюгирования с полиэтиленгликолем // Биоорган. химия. 2012. № 5. С. 545-554.

193. Yoshimoto N., Yamamoto S. PEGylated protein separations: Challenges and opportunities // Biotechnol. J. 2012. V. 7. P. 592-593.

194. Payne R.W., Murphy B.M., Manning M.C. Product development issues for PEGylated proteins // Pharm. Dev. Technol. 2011. V. 16. P. 423-440.

195. Busby T.F., Ingham K.C. Separation of macromolecules by ultrafiltration: Removal of poly(ethylene glycol) from human albumin // J. Biochem. Biophys. Methods. 1980. V. 2. P. 191-206.

196. Seely J.E., Richey C.W. Use of ion-exchange chromatography and hydrophobic interaction chromatography in the preparation and recovery of polyethylene glycol-linked proteins // J. Chromatogr. A. 2001. V. 908. P. 235-241.

197. Пучков И.А., Баирамашвили Д.И., Мягких И.В., Швец В.И. Пэгилированный рекомбинант-ный гранулоцитарный колониестимулирующий фактор пролонгированного действия: новая схема получения активной фармацевтической субстанции // Биотехнология. 2014. № 2. C. 31-62.

198. Morstyn G., Dexter T.M., Foote M. Filgrastim (r-metHuGCSF) In Clinical Practice. Second Edition. N.Y., Basel, Hong Kong: Marcel Dekker, 1998. 696 p.

199. Tanaka H., Satake-Ishikawa R., Ishikawa M., Matsuki S., Asano K. Pharmacokinetics of recombinant human granulocyte colony-stimulating factor conjugated to polyethylene glycol in rats // Cancer Res. 1991. V. 51. P. 3710-3714.

200. Allen R.C. Ex vivo half-life of neutrophils from healthy human subjects pre and post treatment with daily filgrastim or single-dose pegfilgrastim // Blood. 2002. V. 100. P. 243.

201. Molineux G., Kinstler O., Briddell B., Hartley C. [et al.]. A new form of Filgrastim with sustained duration in vivo and enhanced ability to mobilize PBPC in both mice and humans // Exp. Hematol. 1999. V. 27. P. 1724-1734.

202. Johnston E., Crawford J., Blackwell S., Bjurstrom T., Lockbaum P., Roskos L. [et al.]. Randomized, dose-escalation study of SD/01 compared with daily filgrastim in patients receiving chemotherapy // J. Clin. Oncol. 2000. V. 18. P. 2522-2528.

203. Holmes F.A., O'Shaughnessy J.A., Vukelja S., Jones S.E. [et al]. Blinded, randomized, multicenter study to evaluate single administration pegfilgrastim once per cycle versus daily filgrastim as an adjunct to chemotherapy in patients with high-risk stage II or stage III/IV breast cancer // J. Clin. Oncol. 2002. V. 20. P. 727-731.

204. Green M., Koelbl H., Baselga J., Galid A. [et al]. A randomized, double blind, phase 3 study evaluating fixeddose, once-per-cycle pegylated filgrastim (SD/01) vs. daily filgrastim to support chemotherapy for breast cancer // Ann. Oncol. 2003. V. 14. P. 29-35.

205. Lyman G.H., Kuderer N., Greene J., Balducci L. The economics of febrile neutropenia: Implications for the use of colony-stimulating factors // Eur. J. Cancer. 1998. V. 34. P. 1857-1864.

206. Vose J.M., Crump M., Lazarus H., Emmanouilides C., Schenkein D., Moore J. [et al]. Single dose pegfilgrastim (SD/01) is as effective as daily filgrastim following ESHAP chemotherapy for subjects with non-Hodgkin’s lymphoma of Hodgkin’s disease: Results of a randomized, open-label study // Blood. 2001. V. 98. P. 799.

207. Morstyn G., Foote M., Walker T., Molineux G. Filgrastim (rmetHuG-CSF) in the 21st century: SD/01 // Acta Haematol. 2001. V. 105. P. 151-155.


For citations:

Puchkov I.А., Bairamashvili D.I., Shvets V.I. Pegylation, as method of production prolonged forms of biopharmaceutical drugs (pegylated granulocyte colony-stimulating factor as case of study). Fine Chemical Technologies. 2014;9(2):3-31. (In Russ.)

Views: 226

ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)