Preview

Fine Chemical Technologies

Advanced search

The patterns of liquid-phase hydrogen peroxide decomposition over transition metal oxides anchored on mesoporous carbon surface

Full Text:

Abstract

The article is devoted to peculiarities of liquid phase hydrogen peroxide decomposition over transition metal (Ag, Cu, Rh, Pd, N or Co) oxides anchored on mesoporous carbon support. The values of activation energy (Ea) and frequency factor (k0) of the catalytic reaction have been determined with kinetic data at 25–70°C. The reaction rate has been established to depend on the strength of the bond between the transition metal anchored and reactive oxygen species adsorbed. The contribution of free radical mechanism has been estimated with inhibitors of free hydroxy (HO∙) and super-oxide (O2 - ) radicals, e.g., dimethylsulfoxide and potassium chloride, respectively. The mechanism of the liquid phase hydrogen peroxide decomposition over the anchored transition metal oxides has been suggested to involve the formation of surface oxygen-containing transition metal complexes, their decomposition being the limiting step of the reaction.

About the Authors

A. A. Gordienko
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


A. A. Sokolova
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


V. R. Flid
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


References

1. Cota H.M., Katan T., Chin M., Schoenweis F.J. Decomposition of dilute hydroge peroxide in alkaline solution // Nature. 1964. V. 4951. P. 1281-1289.

2. McKee D.W. Catalytic decomposition of hydrogen peroxide by mettals and alloys of the platinum group // J. Catalysis. 1969. V. 14. P. 355-364.

3. Холдеева О.А. Селективное жидкофазное окисление молекулярным кислородом и пероксидом водорода в присутствии катализаторов «ион металла в неорганической матрице» : дис. … д-ра хим. наук. Новосибирск: ИК СО РАН, 2006. 352 с.

4. Centia G., Misono M. New possibilities and opportunities for basic and applied research on selective oxidation by solid catalysts: an overview // Catalysis Today. 1998. V. 41. P. 287-296.

5. Полянская Е.М. Исследование катализаторов на основе наноразмерных углеродных материалов в реакциях глубокого жидкофазного окисления органических субстратов кислородом и пероксидом водорода : автореф. дис. … канд. хим. наук. Новосибирск: ИК СО РАН, 2011. 20 с.

6. Kitajima N., Fukuzumi S.-I., Ono Y., Formation of superoxide ion during the decomposition of hydrogen peroxide on supported metal oxides // J. Phys. Chem. 1978. V. 82. № 13. P. 1505-1509.

7. Voloshin Y., Manganaro J., Lawal A. Kinetics and mechanism of decomposition of hydrogen peroxide over Pd/SiO2 catalyst // Ind. & Eng. Chem. Res. 2008. V. 47. P. 8119-8125.

8. Choudhary V.R., Samanta C., Jana P. Decomposition and/or hydrogenation of hydrogen peroxide over Pd/Al2O3 catalyst in aqueous medium: Factors affecting the rate of H2O2 destruction in presence of hydrogen // Appl. Catal. A: General. 2007. V. 332. P. 70-78.

9. Ono Y., Matsumura T., Kitajima N., Fukurumi S.-I. Formation of superoxide ion during the decomposition of hydrogen peroxide on supported metals // J. Phys. Chem. 1977. V. 81. № 13. P. 1307-1311.

10. Choudhary V.R., Gaikwad A.G. Kinetics of hydrogen peroxide decomposition in aqueous sulfuric acid over palladium/carbon: Effect of acid concentration // Reaction Kinetics & Catal. Lett. 2003. V. 80. № 1. P. 27-32.

11. Лапко В.Ф., Герасимюк И.П., Куць В.С., Тарасенко Ю.А. Активационные характеристики процесса разложения Н2О2 на палладий-углеродных катализаторах // Журн. физ. химии. 2010. Т. 84. № 6. С. 1043-1049.

12. Боресков Г.К. Гетерогенный катализ. М.: Наука, 1988. 304 с.

13. Lin S.-S., Gurol M.D. Catalytic decomposition of hydrogen peroxide on iron oxide: Kinetics, mechanism and implications // Environm. Sci. & Technol. 1998. V. 32. P. 1417-1423.

14. Lousada С.M., Yang M., Nilsson K., Jonsson M. Catalytic decomposition of hydrogen peroxide on transition metal and lanthanide oxides // J. Mol. Catal. A: Chem. 2013. V. 379. P. 178-184.

15. Suh M., Bagus P.S., Pak S., Rosynek M. P., Lunsford J. H. Reactions of hydroxyl radicals on titania, silica, alumina and gold surface // J. Phys. Chem. B. 2000. V. 104. P. 2736-2742.

16. Lousada C.M., Johansson A.J., Brick T., Jonsson M. Reactivity of metal oxide clusters with hydrogen peroxide and water - a DFT study evaluating the performance of different exchange-correlation functionals // Physical Chemistry Chemical Physics. 2013. V. 15. P. 5539-5552.

17. Lousada C.M., Johansson A.J., Brick T., Jonsson M. Mechanism of H2O2 decomposition on transition metal oxide surfaces // J. Phys. Chem. C. 2012. V. 116. P. 9533-9543.

18. Hiroki A., LaVerne J.A. Decomposition of hydrogen peroxide at water-ceramic oxide interfaces // J. Phys. Chem. B. 2005. V. 109. P. 3364-3370.

19. Giamello E., Calosso L., Fubini B., Geobaldo F. Evidence of stable hydroxyl radicals and other oxygen radical species generated by interaction of hydrogen peroxide with magnesium oxide // J. Phys. Chem. 1993. V. 97. P. 5135-5140.

20. Giamello E., Rumori P., Geobaldo F., Fubini B., Paganini M.C. The interaction between hydrogen peroxide and metal oxides: EPR investigations // Appl. Magnetic Resonance. 1996. V. 10. № 1-3. P. 173-192.

21. Anpo M., Che M., Fubini B., Garrone E., Giamello E., Paganini M.C. Generation of superoxide ions at oxide surfaces // Topics in Catalysis. 1999. V. 8. P. 189-198.

22. Плаксин Г.В. Пористые углеродные материалы типа Сибунита // Химия в интересах устойчивого развития. 2001. №. 9. С. 609-620.

23. Taran O., Polyanskaya E., Ogorodnikova O., Kuznetsov V., Parmon V., Besson M., Descorme C. Influence of the morphology and surface chemistry on their catalystic performances in the catalytic wet peroxide oxidation of organic contaminants // Appl. Catal. A: General. 2010. V. 387. № 1-2. P. 55-56.

24. Семиколенов В.А. Современные подходы к приготовлению катализаторов «палладий на угле» // Успехи химии. 1992. Т. 61. В. 2. С. 320-331.

25. Brunauer S., Emmett P.H., Teller E. Adsorption of gases in multimolecular layers // J. Amer. Chem. Soc. 1938. V. 60. P. 309-319.

26. ISO 15901-2 Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption - Part 2: Analysis of mesopores and macropores by gas adsorption. ISO: Geneva, 2006. 30 p.

27. Sing K.S.W., Everett D.H., Haul R.A.W., Moscou L., Pierotti R.A., Rouquerol J., Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity // Pure & Appl. Chem. 1985. V. 57. №. 4. P. 603-619.

28. Грег С., Синг К. Адсорбция, удельная поверхность, пористость. М.: Мир, 1984. 306 с. [Gregg S.J., Sing K.S.W. Adsorption, surface area and porosity].

29. Gaillard F., El Hachimi A., Descorme C., Besson M., Joly J.-P., Polyanskaya E.M., Taran O.P., Parmon V.N. Study of oxygen groups at mesoporous carbon surface by a new fast intermittent thermo-desorption technique // Carbon. 2011. V. 46. № 6. P. 2062-2073.

30. Гурвич Л.В., Карачевцев Г.В., Кондратьев В.Н., Лебедев Ю.А., Медведев В.А., Потапов В.К., Ходеев Ю.С. Энергии разрыва химических связей. Потенциалы ионизации и сродство к электрону. М.: Наука, 1974. 351 c.

31. Bard A.J., Parsons R., Jordan J. Standard potentials in aqueous solution. N.Y.: Marcel Dekker, 1985. 848 p.

32. Lee Y., Lee Ch., Yoon Y. Kinetics and mechanisms of DMSO (dimethylsulfoxide) degradation by UV/H2O2 process // Water Res. 2004. V. 38. № 10. P. 2579-2588.

33. Grigor'ev A.E., Makarov I.E., Pikaev A.K. Formation of Cl2- in the bulk solution during the radiolysis of concentrated aqueous solutions of chlorides // High Energy Chem. 1987. V. 21. P. 99-102.

34. Long C.A., Bielski B.H.J. Rate of reaction of superoxide radical with chloride-containing species // J. Phys. Chem. 1980. V. 84. P. 555-557.


For citation:


Gordienko A.A., Sokolova A.A., Flid V.R. The patterns of liquid-phase hydrogen peroxide decomposition over transition metal oxides anchored on mesoporous carbon surface. Fine Chemical Technologies. 2014;9(3):51-56. (In Russ.)

Views: 63


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)