Quantum chemical research of the molecular structure of 3,4-dicyanofuroxan
https://doi.org/10.32362/2410-6593-2023-18-2-98-108
Abstract
Objectives. The study set out to determine the equilibrium parameters of the 3,4-dicyanofuroxan molecule by means of molecule geometry optimization by quantum chemistry methods, verify the adequacy of the methods used, and compare the obtained results with X-ray diffraction analysis (XRD) and gas electron diffraction (GED) data.
Methods. Quantum chemical calculations were carried out using B3LYP, MP2, and CCSD(T) methods with 6-31G(d,p), cc-pVTZ, and aug-cc-pVTZ basis sets.
Results. The equilibrium molecular structure of 3,4-dicyanofuroxan was refined by means of quantum chemical calculations using the Gaussian09 program. The geometrical parameters were compared with the structure of this compound in the solid phase and a number of related compounds in gas and solid phases. It was theoretically established that the planar equilibrium structure of the dicyanofuroxan molecule has CS symmetry. The structure of the free dicyanofuroxan molecule was found to differ depending on the phase. The B3LYP and CCSD(T) methods describe the molecular structure of dicyanofuroxan more accurately than the MP2 method. A regularity was revealed, according to which an increase in the basis, as a rule, leads to a better agreement of the geometry, regardless of the functional.
Conclusions. The calculations performed are in good agreement with the literature data and results of joint analysis by GED and XRD. The effect of cyano substituents on the ring geometry is observed in comparison with the literature data for the dicyanofuroxan molecule. For the molecule in question, it is better to use the B3LYP/aug-cc-pVTZ method. The values of geometric parameters obtained by this method are in better agreement with the structure in the gas phase. The discrepancies with the experimental XRD results may be due to interactions in the crystal structure. Differences in the geometric parameters obtained on the basis of different functionals and bases make this molecule interesting for experimental structural studies using GED or microwave spectroscopy, which will permit the identification of optimal methods and bases for obtaining the geometric parameters of furoxan class molecules.
About the Authors
I. N. KolesnikovaRussian Federation
Inna N. Kolesnikova - Cand. Sci. (Chem.), Senior Researcher, Senior Lecturer, Faculty of Chemistry, Lomonosov Moscow State University.
1, Leninskie Gory, Moscow, 119992
Scopus Author ID 35727242600, ResearcherID L-8003-2016
Competing Interests:
None
N. V. Lobanov
Russian Federation
Nikolay V. Lobanov - Postgraduate Student, Ya.K. Syrkin Department of Physical Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University; Junior Researcher, Thermophysical Databases Laboratory, V.P. Glushko Thermocenter, Joint Institute for High Temperatures, Russian Academy of Sciences; Engineer, Gas Electron Diffraction Scientific Laboratory, Faculty of Chemistry, Lomonosov Moscow State University.
86, Vernadskogo pr., Moscow, 119571; 13, Izhorskaya ul., Moscow, 125412; 1, Leninskie Gory, Moscow, 119992
Competing Interests:
None
V. N. Lobanov
Russian Federation
Valery N. Lobanov - Leading Engineer, Thermophysical Databases Laboratory, V.P. Glushko Thermocenter, Joint Institute for High Temperatures, Russian Academy of Sciences.
13, Izhorskaya ul., Moscow, 125412
Competing Interests:
None
I. F. Shishkov
Russian Federation
Igor F. Shishkov - Dr. Sci. (Chem.), Leading Researcher, Head of the Gas Electron Diffraction Scientific Laboratory, Faculty of Chemistry, Lomonosov Moscow State University.
1, Leninskie Gory, Moscow, 119992
Scopus Author ID 6701850450, ResearcherID В-2528-2015
Competing Interests:
None
References
1. Mel'nikova S.F., Tselinskii I.V. 1,2,5-Oxadiazoles as energetic compounds. Izvestiya Sankt-Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta (tekhnicheskogo universiteta) = Bulletin of the Saint Petersburg State Institute of Technology (Technical University). 2013;2 (47):25-29 (in Russ.). URL: https://cyberleninka.ru/article/n/proizvodnye-1-2-5-oksadiazola-kak-energonasyschennye-soedineniya (accessed December 09, 2022).]
2. Sharnin G. P., Falyakhov I.F., Yusupova L. M., Larionova O.A. Khimiya energoemkikh soedinenii. Kn. 2. N-, O-nitrosoedineniya, furoksany, furazany, azidy, diazosoedineniya: uchebnoe posobie (Chemistry of Energy-Intensive Substances. V. 2. N-, O-Nitrocompounds, Furoxanes, Furazanes, Azides, Diazocompounds). Kazan: KNITU; 2011. 376 p. (in Russ.). ISBN 978-5-7882-1200-5
3. Grundmann C., Nickel G.W., Bansal R.K. Nitriloxide, XVIII1’ Das Tetramere der Knallsaure (Isocyanilsaure) und seine Derivate. (Justus Liebigs Annalen der Chemie) Eur. J. Org. Chem. 1975;19(6):1029-1050. https://doi.org/10.1002/jlac.197519750602
4. Johnson E.C., Bukowski E.J., Sausa R.C., Sabatini J.J. Safer and Convenient Synthesis of 3,4-Dicyanofuroxan. Org. Process Res. Dev. 2019;23(6):1275-1279. https://doi.org/10.1021/acs.oprd.9b00186
5. Mel'nikova T.M., Novikova T.S., Khmel'nitskii L.I., Sheremetev A.B. Novel synthesis of 3,4-dicyanofuroxan. Mendeleev Commun. 2001;11(1):30-31. https://doi.org/10.1070/MC2001v011n01ABEH001369
6. Mott B.T., Cheng K.C.-C., Guha R., et al. A furoxan- amodiaquine hybrid as a potential therapeutic for three parasitic Diseases. Med. Chem. Commun. 2012;3(12):1505-1511. https://doi.org/10.1039/C2MD20238G
7. Wieland H. Die Polymerisation der Knallsaure. Isocyanilsaure und Erythro-cyanilsaure. VII. Mitteilung uber die Knallsaure. (Justus Liebigs Annalen der Chemie) Eur. J. Org. Chem. 1925;444(1):7-40. https://doi.org/10.1002/jlac.19254440103
8. Parker C.O., Emmons W.D., Rolewicz H.A., McCallum K.S. Chemistry of dinitroacetonitrile: Preparation and properties of dinitroacetonitrile and its salts. Tetrahedron. 1962;17(1-2):79-87. https://doi.org/10.1016/S0040-4020(01)99006-4
9. Belyakov A.V., Oskorbin A.A., Losev, V.A., Rykov A.N., Shishkov I.F., Fershtat L.L., Larin A.A., Kuznetsov V.V., Makhova N.N. The equilibrium molecular structure of 3-methyl-4-nitro-and 4-methyl-3-nitrofuroxans by gas-phase electron diffraction and coupled cluster calculations. J. Molec. Str. 2020;1222:128856. https://doi.org/10.1016/j.molstruc.2020.128856
10. Vogt N., Khaikin L.S., Rykov A.N., et al. The equilibrium molecular structure of 2-cyanopyridine from combined analysis of gas-phase electron diffraction and microwave data and results of ab initio calculations. Struct. Chem. 2019;30;1699-1706. https://doi.org/10.1007/s11224-019-01393-y
11. Khaikin L.S., Vogt N., Rykov A.N., Grikina O.E., Vogt J., Kochikov I.V., Ageeva E.S., Shishkov I.F. The equilibrium molecular structure of 3-cyanopyridine according to gas-phase electron diffraction and microwave data and the results of quantum-chemical calculations. Mendeleev Commun. 2018;28(3):236-238. https://doi.org/10.1016/j.mencom.2018.05.002
12. Khaikin L.S., Vogt N., Rykov A.N., et al. The equilibrium molecular structure of 4-cyanopyridine according to a combined analysis of gas-phase electron diffraction and microwave data and coupled-cluster computations. Russ. J. Phys. Chem. 2018;92(10):1970-1974. https://doi.org/10.1134/S0036024418100102
13. Pasinszki T., Ferguson G., Westwood N.P.C. Geometric and electronic structure of dicyanofuroxan by experiment and theory. J. Chem. Soc. Perkin Trans. 2. 1996;(2):179-185. https://doi.org/10.1039/P29960000179
14. Pasinszki T., Westwood N.P.C. Substituted oximes and furoxans as precursors to unstable nitrile oxides. Electronic and geometric structures by ultraviolet photoelectron spectroscopy, infrared spectroscopy and ab initio calculations. J. Mol. Struc. 1997;408-409:161-169. https://doi.org/10.1016/s0022-2860(96)09631-7
15. Vass G., Dzsotjan D., Lajgut G.G., Pasinszki T. Photoelectron spectroscopic investigation of the electronic structure of furoxans. Eur. Chem. Bull. 2012;1(1-2):22-26. URL: https://www.epa.oszk.hu/02200/02286/00001/pdf/EPA02286_European_Chemical_Bulletin_2012_01-02_Vass_Dzsotjan_Lajgut_etal.pdf
16. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A., Bloino J., Janesko B.G., Gomperts R., Mennucci B., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V.G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A., Peralta Jr. J. E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J. Gaussian 09, Revision A.02. Gaussian, Inc., Wallingford CT. 2016. URL: https://gaussian.com/g09citation/ (accessed December 09, 2022).
17. Becke D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A. 1988;38(6):3098-3100. https://doi.org/10.1103/PhysRevA.38.3098
18. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37(2):785-789. https://doi.org/10.1103/PhysRevB.37.785
19. M0ller C., Plesset M.S. Note on an Approximation Treatment for Many-Electron Systems. Phys. Rev. 1934;46(7):618-622. https://doi.org/10.1103/PhysRev.46.618
20. Petersson A., Bennett A., Tensfeldt T.G., Al-Laham M.A., Shirley W.A., Mantzaris J. A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J. Chem. Phys. 1988;89(4):2193-2218. https://doi.org/10.1063/1.455064
21. Dunning Jr. T.H. Gaussian Basis Sets for Use in Correlated Molecular Calculations. I. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989;90(2):1007-1023. https://doi.org/10.1063/1.456153
22. Kendall R.A., Dunning T.H., Harrison R.J. Electron-Affinities of the first-row Atoms Revisited. Systematic Basis Sets and Wave Functions. J. Chem. Phys. 1992;96(9):6796-6806. https://doi.org/10.1063/1.462569
23. Barnes E.C., Petersson G.A., Montgomery J.A. Jr., Frisch M.J. Martin M.L.J. Unrestricted Coupled Cluster and Brueckner Doubles Variations of W1 Theory. J. Chem. Theory Comput. 2009;5(10):2687-2693. https://doi.org/10.1021/ct900260g
Supplementary files
|
1. Atom numbering in the 3,4-dicyanofuroxan molecule | |
Subject | ||
Type | Исследовательские инструменты | |
View
(202KB)
|
Indexing metadata ▾ |
- The equilibrium molecular structure of 3,4-dicyanofuroxan was confirmed using high-level quantum chemical calculations in the Gaussian program.
- The geometrical parameters were compared with the structure of this compound in the solid phase.
- It was established that the molecule in the gas phase is planar and has CS symmetry.
Review
For citations:
Kolesnikova I.N., Lobanov N.V., Lobanov V.N., Shishkov I.F. Quantum chemical research of the molecular structure of 3,4-dicyanofuroxan. Fine Chemical Technologies. 2023;18(2):98-108. https://doi.org/10.32362/2410-6593-2023-18-2-98-108