Effect of activating additives on the cold sintering process of (MnFeCoNiCu)3O4 high-entropy ceramics
https://doi.org/10.32362/2410-6593-2022-17-5-439-449
Abstract
Objectives. To obtain experimental data on the effect of activating additive type on the cold sintering process of (MnFeCoNiCu)3O4 high-entropy ceramic. The following substances were used as activating additives: ammonium acetate (CH3COONH4), acetic acid (CH3COOH), ammonium chloride (NH4Cl), potassium fluoride dihydrate (КF·2H2O), lithium fluoride (LiF), sodium fluoride (NaF), and sodium hydroxide (NaOH).
Methods. Synthesis of the initial powder by low-temperature self-propagating method; investigation of the powder particles size distribution by laser diffraction method; analysis of the particle shape and compacted sample microstructure by scanning electron microscopy; investigation of the phase composition by X-ray phase analysis; high-entropy ceramic sample consolidation by cold sintering process. The density of the initial powder and the relative density of cold sintered samples were determined by the Archimedes method.
Results. Samples with a relative density of over 0.70 were obtained using distilled water, CH3COONH4 and NaOH during cold sintering at 300 °C, with a holding time of 30 min and pressure 315 MPa.
Conclusions. For the first time, the effect of the type of activating additive on the relative density of high-entropy ceramics (MnFeCoNiCu)3O4 samples obtained by cold sintering process has been experimentally demonstrated. The samples microstructures have pronounced differences: 20 wt % distilled water does not lead to grain growth, with only their compaction to 0.71 relative density observed; however, the addition of 0.1 wt % CH3COONH4 and NaOH increases the average grain size when reaching similar relative densities (0.70 and 0.71, respectively). X-ray diffraction analysis showed that the cold sintering process does not lead to a change in the phase composition of the initial (MnFeCoNiCu)3O4 powder, confirming the preservation of the high-entropy structure.
Keywords
About the Authors
A. V. SmirnovRussian Federation
Andrey V. Smirnov, Cand. Sci. (Eng.), Head of the Department of Advanced Materials Technologies
78, Vernadskogo pr., Moscow, 119454
ResearcherID J-2763-2017
Scopus Author ID 56970389000
RSCI SPIN-code 2919-9250
Yu. D. Ivakin
Russian Federation
Yuri D. Ivakin, Cand. Sci. (Chem.), Senior Researcher, Department of Physical Chemistry
1-3, Kolmogorova ul., Moscow, 119234
ResearcherID N-9483-2013
Scopus Author ID 6603058433
RSCI SPIN-code 7337-4173
M. V. Kornyushin
Russian Federation
Maxim V. Kornyushin, Engineer, Laboratory of Ceramic and Composite Materials
78, Vernadskogo pr., Moscow, 119454
Scopus Author ID 57219230569
RSCI SPIN-code 7995-3408
A. A. Kholodkova
Russian Federation
Anastasia A. Kholodkova, Cand. Sci. (Chem.), Junior Researcher, Department of Physical Chemistry
1-3, Kolmogorova ul., Moscow, 119234
ResearcherID M-2169-2016
Scopus Author ID 56530861400
RSCI SPIN-code 7256-7784
A. A. Vasin
Russian Federation
Alexander A. Vasin, Cand. Sci. (Eng.), Leading Researcher, Laboratory of Ceramic and Composite Materials
78, Vernadskogo pr., Moscow, 119454
ResearcherID К-3214-2015
Scopus Author ID 57211840246
RSCI SPIN-code 3864-9132
S. Ayudinyan
Armenia
Sofia Aydinyan, Cand. Sci. (Chem.), Senior Researcher
5/2, P. Sevak ul., Yerevan, 0014
Scopus Author ID 24479551800
H. V. Kirakosyan
Armenia
Hasmik V. Kirakosyan, Cand. Sci. (Chem.), Junior Researcher
5/2, P. Sevak ul., Yerevan, 0014
Scopus Author ID 56925595700
References
1. Yeh J.-W., Chen S.-K., Lin S.-J., Gan J.-Y., Chin T.-S., Shun T.-T., et al. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004;6(5):299–303. https://doi.org/10.1002/adem.200300567
2. George E.P., Raabe D., Ritchie R.O. High-entropy alloys. Nat. Rev. Mater. 2019;4(8):515–34. https://doi.org/10.1038/s41578-019-0121-4
3. Oses C., Toher C., Curtarolo S. High-entropy ceramics. Nat. Rev. Mater. 2020;5(4):295–309. https://doi.org/10.1038/s41578-019-0170-8
4. Dąbrowa J., Stygar M., Mikuła A., Knapik A., Mroczka K., Tejchman W., et al. Synthesis and microstructure of the (Co,Cr,Fe,Mn,Ni)3O4 high entropy oxide characterized by spinel structure. Mater. Lett. 2018;216:32–6. https://doi.org/10.1016/j.matlet.2017.12.148
5. Mao A., Quan F., Xiang H.-Z., Zhang Z.-G., Kuramoto K., Xia A.-L. Facile synthesis and ferrimagnetic property of spinel (CoCrFeMnNi)3O4 high-entropy oxide nanocrystalline powder. J. Mol. Struct. 2019;1194:11–18. https://doi.org/10.1016/j.molstruc.2019.05.073
6. Mao A., Xiang H.-Z., Zhang Z.-G., Kuramoto K., Zhang H., Jia Y. A new class of spinel high-entropy oxides with controllable magnetic properties. J. Magn. Magn. Mater. 2020;497:165884. https://doi.org/10.1016/j.jmmm.2019.165884
7. Witte R., Sarkar A., Kruk R., Eggert B., Brand R.A., Wende H., et al. High-entropy oxides: An emerging prospect for magnetic rare-earth transition metal perovskites. Phys. Rev. Mater. 201913;3(3):034406. https://doi.org/10.1103/Phys-RevMaterials.3.034406
8. Jimenez-Segura M.P., Takayama T., Bérardan D., Hoser A., Reehuis M., Takagi H., et al. Long-range magnetic ordering in rocksalt-type high-entropy oxides. Appl. Phys. Lett. 2019;114(12):122401. https://doi.org/10.1063/1.5091787
9. Dai S., Li M., Wang X., Zhu H., Zhao Y., Wu Z. Fabrication and magnetic property of novel (Co,Zn,Fe,Mn,Ni)3O4 high-entropy spinel oxide. J. Magn. Magn. Mater. 2021;536:168123. https://doi.org/10.1016/j.jmmm.2021.168123
10. Bordia R.K., Kang S.L., Olevsky E.A. Current understanding and future research directions at the onset of the next century of sintering science and technology. J. Am. Ceram. Soc. 2017;100(6):2314–2352. https://doi.org/10.1111/jace.14919
11. Guo J., Floyd R., Lowum S., Maria J.-P., Herisson de Beauvoir T., Seo J.-H., Randall C.A. Cold Sintering: Progress, Challenges, and Future Opportunities. Annu. Rev. Mater. Res. 2019;49(1):275–295. https://doi.org/10.1146/annurev-matsci-070218-010041
12. Maria J.-P., Kang X., Floyd R.D., Dickey E.C., Guo H., Guo J., et al. Cold sintering: Current status and prospects. J. Mater. Res. 2017;32(17):3205–3218. https://doi.org/10.1557/jmr.2017.262
13. Gonzalez-Julian J., Neuhaus K., Bernemann M., Pereira da Silva J., Laptev A., Bram M., et al. Unveiling the mechanisms of cold sintering of ZnO at 250 °C by varying applied stress and characterizing grain boundaries by Kelvin Probe Force Microscopy. Acta Mater. 2018;144(1):116–128. https://doi.org/10.1016/j.actamat.2017.10.055
14. Galotta A., Sglavo V.M. The cold sintering process: A review on processing features, densification mechanisms and perspectives. J. Eur. Ceram. Soc. 2021;41(16):1–17. https://doi.org/10.1016/j.jeurceramsoc.2021.09.024
15. Ivakin Y., Smirnov A., Kholodkova A., Vasin A., Kormilicin M., Kornyushin M., et al. Comparative Study of Cold Sintering Process and Autoclave Thermo-Vapor Treatment on a ZnO Sample. Crystals. 2021;11(1):71. https://doi.org/10.3390/cryst11010071
16. Ivakin Yu.D., Smirnov A.V., Kormilitsin M.N., Kholodkova A.A., Vasin A.A., Kornyushin M.V., Tarasovskii V.P., Rybal’chenko V.V. Effect of Mechanical Pressure on the Recrystallization of Zinc Oxide in a Water Fluid Medium under Cold Sintering. Russ. J. Phys. Chem. B. 2021;15(8):1228–1250. https://doi.org/10.1134/S1990793121080054
17. Ivakin Y.D., Smirnov A.V., Kurmysheva A.Yu., Kharlanov A.N., Solís Pinargote N.W., Smirnov A., et al. The Role of the Activator Additives Introduction Method in the Cold Sintering Process of ZnO Ceramics: CSP/SPS Approach. Materials. 2021;14(21):6680. https://doi.org/10.3390/ma14216680
18. Nakajima T., Žemva B., Tressaud A. Advanced Inorganic Fluorides: Synthesis, Characterization and Applications. Elsevier; 2000. 701 p. https://doi.org/10.1016/B978-0-444-72002-3.X5000-5
19. Smirnov A.V., et al. The Cold Sintering Process of High-Entropy Ceramics (MnFeCoNiCu)3O4. Int. J. Mech. Eng. 2021;6(3):1–6.
20. Gates-Rector S., Blanton T. The Powder Diffraction File: A Quality Materials Characterization Database. Powder Diffr. 2019;34(4):352–360. https://doi.org/10.1017/S0885715619000812
21. Wang D., Liu Z., Du S., Zhang Y., Li H., Xiao Z., et al. Low-temperature synthesis of small-sized highentropy oxides for water oxidation. J. Mater. Chem. A. 2019;7(42):24211–24216. https://doi.org/10.1039/C9TA08740K
Supplementary files
|
1. Scheme of the cold sintering process. | |
Subject | ||
Type | Research Instrument | |
View
(105KB)
|
Indexing metadata ▾ |
- The high-entropy ceramic material (MnFeCoNiCu)3O4 synthesized by low-temperature self-propagating synthesis has two phases with the spinel and rock salt structures and it is expected that the material has pronounced magnetic properties.
- When obtaining the (MnFeCoNiCu)3O4 high-entropy ceramics the main task is to preserve the high-entropy structure and the initial phase composition.
- The cold sintering process of the (MnFeCoNiCu)3O4 high-entropy ceramics at 300°C, 30 min dwell time, and 315 MPa pressure using an aqueous medium with additives of 0.1 wt % CH3COONH4 and NaOH does not lead to a change in the phase composition of the initial powder, which indicates the preservation of a highly entropic structure.
Review
For citations:
Smirnov A.V., Ivakin Yu.D., Kornyushin M.V., Kholodkova A.A., Vasin A.A., Ayudinyan S., Kirakosyan H.V. Effect of activating additives on the cold sintering process of (MnFeCoNiCu)3O4 high-entropy ceramics. Fine Chemical Technologies. 2022;17(5):439-449. https://doi.org/10.32362/2410-6593-2022-17-5-439-449