Synthesis of new photo-cured phosphorus-containing oligoestermethacrylates with a spacer in the structure
https://doi.org/10.32362/2410-6593-2022-17-5-410-426
Abstract
Objectives. To synthesize phosphorus-containing oligoestermethacrylates spatially separated by spacers of aliphatic or aromatic structure and evaluate their effect on photocuring kinetics.
Methods. For determining the qualitative and quantitative composition of the synthesized compounds, the following methods were used: thin layer chromatography; chromatographic and mass spectrometry; infrared spectroscopy; 1H, 13C, 31P nuclear magnetic resonance spectroscopy; differential scanning calorimetry. The dielectric loss tangent was determined on a specially designed optical cell with an ultraviolet (UV) light source to an immittance meter. Elemental analysis was performed on an energy dispersive X-ray fluorescence spectrometer.
Results. Spatially separated oligoestermethacrylates based on phosphorus trichloride containing aliphatic or aromatic spacers in the structure were synthesized. During the interaction of glycidyl methacrylate with phosphorus trichloride in the mass of the latter, reaction products were shown to be formed both according to the Krasusky rule from the side of the α-carbon atom, as well as against this rule with the formation of isomeric products. Obtaining these compounds in bulk is possible only in the presence of a homopolymerization inhibitor. The influence of the spacer structure on the curing rate of oligoestermethacrylates under the action of UV radiation has been established. It has been shown that the introduction of a spacer into the oligomer structure is accompanied by an increase in the induction period by a factor of 39 compared to a sample without a spacer.
Conclusions. The results obtained indicate the possibility of obtaining new oligoestermethacrylates with aliphatic and aromatic spacers in the structure. The influence of the structure of the spacer on the kinetics of photocuring is determined.
Keywords
About the Authors
B. A. BuravovRussian Federation
Boris A. Buravov, Cand. Sci. (Chem.), Associate Professor, Department of General and Inorganic Chemistry; Senior Researcher, Laboratory of Polymer, Composite and Hybrid Functional Materials
28, pr. im. V.I. Lenina, Volgograd, 400005
ResearcherID AAH-5810-2021
RSCI SPIN-code 6730-5763
A. Al-Khamzawi
Russian Federation
Ali Al-Khamzawi, Postgraduate Student, Department of General and Inorganic Chemistry
28, pr. im. V.I. Lenina, Volgograd, 400005
ResearсherID M-2885-2017
RSCI SPIN-code 2551-0018
E. S. Bochkarev
Russian Federation
Eugene S. Bochkarev, Junior Researcher, Laboratory of Polymer, Composite and Hybrid Functional Materials
28, pr. im. V.I. Lenina, Volgograd, 400005
Scopus Author ID 57222574440
RSCI SPIN-code 6024-6675
N. Kh. Grichishkina
Russian Federation
Nazmiya Kh. Grichishkina, Senior Lecturer, Department of General and Inorganic Chemistry
28, pr. im. V.I. Lenina, Volgograd, 400005
RSCI SPIN-code 5661-4527
S. V. Borisov
Russian Federation
Sergey V. Borisov, Cand. Sci. (Eng.), Associate Professor, Department of Сhemistry and Processing Technology of Elastomers; Senior Researcher, Laboratory of Polymer, Composite and Hybrid Functional Materials
28, pr. im. V.I. Lenina, Volgograd, 400005
Researcher ID AAF-1221-2021
Scopus Author ID 57193435253
RSCI SPIN-code 4774-4238
N. V. Sidorenko
Russian Federation
Nina V. Sidorenko, Cand. Sci. (Eng.), Associate Professor, Department of Сhemistry and Processing Technology of Elastomers
28, pr. im. V.I. Lenina, Volgograd, 400005
ResearcherID A-9544-2014
Scopus Author ID 16308435400
RSCI SPIN-code 5155-3692
O. I. Tuzhikov
Russian Federation
Oleg I. Tuzhikov, Dr. Sci. (Chem.), Professor, Department of Technology of Macromolecular and Fibrous Materials
28, pr. im. V.I. Lenina, Volgograd, 400005
Scopus Author ID 6507272270
RSCI SPIN-code 7255-0330
O. O. Tuzhikov
Russian Federation
Oleg O. Tuzhikov, Dr. Sci. (Eng.), Associate Professor, Head of the Department of General and Inorganic Chemistry
28, pr. im. V.I. Lenina, Volgograd, 400005
Scopus Author ID 12645529200
RSCI SPIN-code 8142-5915
References
1. Levchik S.V. Introduction to Flame Retardancy and Polymer Flammability. In: Morgan A.B., Wilkie C.A. (Eds.). Flame Retardant Polymer Nanocomposites. John Wiley & Sons, Inc.; 2006. P. 1–29. https://doi.org/10.1002/9780470109038.ch1
2. Tuzhikov O.I., Khokhlova T.V., Bondarenko S.N., et al. Elastomery i plastiki s ponizhennoi goryuchest’yu: monografiya ( Elastomers and plastics with reduced flammability: monograph). Volgograd: Politekhnik; 2005. 214 p. (in Russ.). ISBN 5-230-04464-0
3. Berlin Al. Al. Combustion of polymers and polymer materials of reduced flammability. Sorosovskii obrazovatel’nyi zhurnal = Soros Educational Journal. 1996;2(9):57–63 (in Russ.).
4. Wang Z, Liang B. Synthesis and properties of phosphorus and nitrogen containing intumescent flameretardant curing agent for epoxy resin. Plast. Rubber Compos. 2018;47(7):306–314. https://doi.org/10.1080/14658011.2018.1491702
5. Bier F., Six J.-L., Durand A. DOPO-Based Phosphorus-Containing Methacrylic (Co)Polymers: Glass Transition Temperature Investigation. Macromol. Mater. Eng. 2019;304(4). https://doi.org/10.1002/mame.201800645
6. Harada M., Hirotani M., Ochi M. Synthesis and improved mechanical properties of twin-mesogenic epoxy thermosets using siloxane spacers with different lengths. J. Appl. Polym. Sci. 2019;136(34):47891. https://doi.org/10.1002/app.47891
7. Luo C., Zuo J., Wang F., Lin F., Zhao J., Xu Z. Click chemistry-assisted preparation and properties of phosphorus and nitrogen synergistic flame retardant optical resin with a high refractive index. J. Appl. Polym. Sci. 2018;135(38):46648. https://doi.org/10.1002/app.46648
8. Yang X., Chen S., Chen S., Xu H. Influencing factors on liquid crystalline properties of cholesterol side-chain liquid crystalline polymers without spacer: molecular weight and copolymerisation. Liq. Cryst. 2019;46(12):1827–1842. https://doi.org/10.1080/02678292.2019.1606352
9. Brigadnov K.A., Bilichenko Y.V., Polyakov V.A., Borisov R.S., Gusev K.I., Rudakova T.A., et al. Epoxy oligomers modified with epoxyphosphazenes. Polym. Sci. Ser. B. 2016;58(5):549–555. https://doi.org/10.1134/S1560090416050018 [Original Russian Text: Brigadnov K.A., Bilichenko Y.V., Polyakov V.A., Borisov R.S., Gusev K.I., Rudakova T.A., Filatov S.N., Kireev V.V. Epoxy oligomers modified with epoxyphosphazenes. Vysokomolekulyarnye Soedineniya. Seriya B. 2016;58(5):387–393 (in Russ.). https://doi.org/10.7868/S2308113916050016 ]
10. Tuzhikov O.I., Tuzhikov O.O., Buravov B.A., et al. Method for obtaining thermo- and heat-resistant polymers based on tris-[(1-chloromethyl-2-methacryloxy)ethoxy]- phosphines. RF Pat. 2697721, MPK C07F9/141, C08G 79/04. Volgograd: VolgGTU; 18.08.2019.
11. Tuzhikov O.I., Tuzhikov O.O., Buravov B.A., et al. Application of oligoesteracrylate ((((4-((1-(2-((bis((1-chloro-3-(methacryloyloxy)propan-2-yl)oxy)phosphine)- oxy)-3-chlorophenoxy)-3-chloropropan-2-yl)oxy)-1-chlorobutan-2-yl)oxy)phosphindiyl)bis(oxy))bis(3-chloropropan-2,1-diyl)- bis(2-methacrylate) as a monomer for the production of thermo- and heat-resistant polymers with reduced flammability. RF Pat. 2712107. MPK C08G 79/04, C08F 279/06, C07F 9/00. Volgograd: VolgGTU; 24.01.2020.
12. Tuzhikov O.I., Tuzhikov O.O., Buravov B.A., et al. Application of oligoesteracrylate ((((((((((2-hydroxypropane-1 , 3 - diyl) bis (oxy) ) bis (4, 1 - phenylene) ) bis (propan - 2, 2 - diy l)) - bis (4. 1 - phenylene)) bis (hydroxy)) - bis (1 - chloropropane - 3, 2 - diyl)) bis (oxy)) - bis (phosphintriyl)) tetrakis (oxy)) - tetrakis(3-chloropropane-2,1-diyl)tetrakis(2-methyl acrylate) as a monomer for the production of thermo- and heat-resistant polymers with reduced flammability. RF Pat. 2712116. MPK C08G 79/04, C07F 9/141. Volgograd: VolgGTU; 24.01.2020.
13. Dogadkin B.A, Dontsov A.A., Shershnev V.A. Khimiya elastomerov ( Chemistry of elastomers). Moscow: Khimiya; 1981. 376 p. (in Russ.).
14. Efros L.S., Gorelik M.V. Khimiya i tekhnologiya promezhutochnykh produktov ( Chemistry and technology of intermediate products). Leningrad: Khimiya; 1979. 544 p. (in Russ.).
15. Gorbunov B.N., Gurvich Ya.A., Maslova I.P. Khimiya i tekhnologiya stabilizatorov polimernykh materialov (Chemistry and technology of stabilizers of polymer materials). Moscow: Khimiya; 1981. 368 p. (in Russ.).
16. Khardin A.P., Tuzhikov O.I., V’yunov K.A., Khokhlova T.V. Kinetics of the reaction of phenoxymethylphosphonic acid chloride with glycidyl methacrylate. Zhurnal Obshchei Khimii. 1979;49(5):1031–1035 (in Russ.). URL: https://www.elibrary.ru/item.asp?id=22974331
17. Tuzhikov O.I., Khokhlova T.V., Bondarenko S.N., Dkhaibe M., Orlova S.A. Modification of epoxy-4,4′- isopropylidenediphenol resins with phosphorylated methacrylates for preparing compounds of the interpenetrating polymer network type. Russ. J. Appl. Chem. 2009;82(11):2034–2040. https://doi.org/10.1134/S107042720911024X [Original Russian Text: Tuzhikov O.I., Khokhlova T.V., Bondarenko S.N., Dkhaibe M., Orlova S.A. Modification of epoxy-4,4′-isopropylidenediphenol resins with phosphorylated methacrylates for preparing compounds of the interpenetrating polymer network type. Zhurnal Prikladnoi Khimii. 2009;82(11):1887–1893 (in Russ.). URL: https://www.elibrary.ru/item.asp?id=44517526]
18. Khardin A.P., Tuzhikov O.I., V’yunov K.A., Khokhlova T.V., Rygalov L.N. Kinetics of reactions of phenoxymethylphosphonic acid chloride with unsymmetrical alpha-oxides. Zhurnal Obshchei Khimii. 1980;50(8):1733–1738 (in Russ.). URL: https://elibrary.ru/item.asp?id=21264731
19. Malinovskii M.S. Okisi olefinov i ikh proizvodnye (Oxides of olefins and their derivatives). Moscow: Goskhimtekhizdat; 1961. 553p. (in Russ.).
20. Chike K.E., Myrick M.L., Lyon R.E., Angel S.M. Raman and near-infrared studies of an epoxy resin. Appl. Spectrosc. 1993;47(10):1631–1635. https://doi.org/10.1366/0003702934334714
21. Guerra A.J., Lammel-Lindemann J., Katko A., Kleinfehn A., Rodriguez C.A., Catalani L.H., et al. Optimization of photocrosslinkable resin components and 3D printing process parameters. Acta Biomater. 2019;97:154–161. https://doi.org/10.1016/j.actbio.2019.07.045
22. Lima A.F., Salvador M.V.O., Dressano D., Saraceni C.H.C., Gonçalves L.S., Hadis M., et al. Increased rates of photopolymerisation by ternary type II photoinitiator systems in dental resins. J. Mech. Behav. Biomed. Mater. 2019;98:71–78. https://doi.org/10.1016/j.jmbbm.2019.06.005
23. Salgado V.E., Albuquerque P.P.A.C., Cavalcante L.M., Pfeifer C.S., Moraes R.R., Schneider L.F.J. Influence of photoinitiator system and nanofiller size on the optical properties and cure efficiency of model composites. Dent. Mater. 2014;30(10):e264–e271. https://doi.org/10.1016/j.dental.2014.05.019
24. Irzhak V.I., Mezhikovskii S.M. Kinetics of Oligomer Curing. Russ. Chem. Rev. 2008;77(1):77–103. https://doi.org/10.1070/RC2008v077n01ABEH003752 [Original Russian Text: Irzhak V.I., Mezhikovskii S.M. Kinetics of Oligomer Curing. Uspekhi Khimii. 2008;77(1):78–104 (in Russ.). URL: https://elibrary.ru/item.asp?id=9933186]
25. Irzhak V.I., Mezhikovskii S.M. Khimicheskaya fizika otverzhdeniya oligomerov: monografiya (Chemical physics of curing oligomers: monograph). Moscow: Yurait; 2020. 276 р. (in Russ.).
26. Tuzhikov O.O., Buravov B.A., Bochkarev E.S., Avvakumov V.E., Sidorenko N.V., et al. Effect of soluble PVC and copolimer A-15-O in epoxy resin on physicalmechanical properties of hydroxo- silicated polymerated systems and their fire retardant effect. Izvestiya VolgGTU = Izvestia VSTU. 2018;12(222):106–113 (in Russ.).
Supplementary files
|
1. Time dependences of thermal effects of photo-curing PPC-1, PPC-2, and PPC-3. | |
Subject | ||
Type | Research Instrument | |
View
(60KB)
|
Indexing metadata ▾ |
- Spatially separated oligoestermethacrylates based on phosphorus trichloride containing aliphatic or aromatic spacers in the structure were synthesized.
- During the interaction of glycidyl methacrylate with phosphorus trichloride in the mass of the latter, reaction products were shown to be formed both according to the Krasusky rule from the side of the α-carbon atom, as well as against this rule with the formation of isomeric products.
- Obtaining these compounds in bulk is possible only in the presence of a homopolymerization inhibitor.
- The influence of the spacer structure on the curing rate of oligoestermethacrylates under the action of UV radiation has been established.
- It has been shown that the introduction of a spacer into the oligomer structure is accompanied by an increase in the induction period by a factor of 39 compared to a sample without a spacer.
Review
For citations:
Buravov B.A., Al-Khamzawi A., Bochkarev E.S., Grichishkina N.Kh., Borisov S.V., Sidorenko N.V., Tuzhikov O.I., Tuzhikov O.O. Synthesis of new photo-cured phosphorus-containing oligoestermethacrylates with a spacer in the structure. Fine Chemical Technologies. 2022;17(5):410-426. https://doi.org/10.32362/2410-6593-2022-17-5-410-426