Preview

Fine Chemical Technologies

Advanced search

THE METHOD FOR OBTAINING A DERIVATIVE CLOSO-DECABORATE ANION WITH PENDANTE DTPA-GROUP

https://doi.org/10.32362/2410-6593-2019-14-1-59-65

Full Text:

Abstract

This paper describes the method for obtaining a new derivative of the closo-decaborate anion with diethylenetriaminepentaacetic acid (DTPA) as a pendant group attached to the boron cluster through an alkoxyl spacer chain. This derivative is formed by the interaction of 1,4-dioxane derivative of the anion [B10H10]2- with DTPA potassium salt in an aqueous medium. As a result of the reaction, an exo-polyhedral cyclic substituent is opened, and then the addition of a polyfunctional group through an oxygen atom occurs. The synthesized compound is in fact an effective polydentate ligand capable of coordinating to the complexing agent both due to the donor atoms of the attached DTPA fragment and through the formation of three-center two-electron bonds. The obtained compound interacts with gadolinium(III) carbonate forming a complex of the composition [Gd2B10H9O2C4H8(dtpa)]·3H2O. The synthesized substances were studied by IR spectroscopy, polynuclear (11B, 13C and 1H) NMR spectroscopy, ESI mass spectrometry, elemental and thermographic analysis. closo-Decaborate with the pendant DTPA group is of interest in 10B neutron capture therapy of malignant tumors due to the high content of boron atoms and a convenient way of their transport to the affected cells. The obtained boron-containing derivatives of gadolinium(III) can act as drugs of combined action, because they can perform, in addition to the above described therapeutic function, the diagnostic function due to the presence of gadolinium atoms int hem.

About the Authors

E. Yu. Matveev
MIREA - Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies); Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Russian Federation

Ph.D. (Chemistry), Associate Professor of the A.N. Reformatskiy Chair of Inorganic Chemistry,

86, Vernadskogo pr., Moscow 119571, Russia

Researcher at the Laboratory of Chemistry of Light Elements and Clusters,

31, Leninsky pr., Moscow, 119991, Russia



S. S. Akimov
Khimmed Ltd.
Russian Federation

Ph.D. (Chemistry), Manager

9 (bld. 3), Kashirskoe shosse, Moscow, 115230, Russia



A. S. Kubasov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Russian Federation

Ph.D. (Chemistry), Researcher at the Laboratory of Chemistry of Light Elements and Clusters,

31, Leninsky pr., Moscow, 119991, Russia



V. M. Retivov
Federal State Unitary Enterprise “Research Institute of Chemical Reagents and High-Purity Chemical Substances”
Russian Federation

Ph.D. (Chemistry), Head of the Analytical Testing Center,

3, Bogorodsky Val, Moscow, 107076, Russia



K. Yu. Zhizhin
MIREA - Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies); Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Russian Federation

D.Sc. (Chemistry), Corresponding Member of RAS, Professor of the A.N. Reformatskiy Chair of Inorganic Chemistry,

86, Vernadskogo Pr., Moscow 119571, Russia

Deputy Director for Research

31, Leninsky pr., Moscow, 119991, Russia



N. T. Kuznetsov
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences
Russian Federation

D.Sc. (Chemistry), Academician of RAS, Head of the Laboratory of Chemistry of Light Elements and Clusters

31, Leninsky pr., Moscow, 119991, Russia



References

1. Barth R.F., Vicente M.H., Harling O.K., Kiger W.S. 3rd, Riley K.J., Binns P.J., Wagner F.M., Suzuki M., Aihara T., Kato I., Kawabata S. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiation Oncology. 2012; 7: 146-167.

2. Soloway A.H., Tjarks W., Barnum B.A., Rong F.-G., Barth R.F., Codogni I.M., Wilson J.G. The chemistry of neutron capture therapy. Chem. Rev. 1998; 98(4): 1515-1562.

3. Sjoberg S., Carlsson J., Ghaneolhosseini H., Gedda L., Hartmann T., Malmquist J., Naesland C., Olsson P., Tjarks W. Chemistry and biology of some low molecular weight boron compounds for boron neutron capture therapy. J. Neuro-Oncology. 1997; 33(1-2): 41-52.

4. Voloshin Ya.Z., Varsatskii O.A., Bubnov Yu.N. Cage complexes of transition metals in biochemistry and medicine. Russ. Chem. Bull. 2007; 56(4): 577-605.

5. Goswami L.N., Ma L., Chakravarty S., Cai Q., Jalisatgi S.S., Hawthorne M.F. Discrete nanomolecular polyhedral borane scaffold supporting multiple gadolinium(III) complexes as a high performance MRI contrast agent. Inorg. Chem. 2013; 52(4): 1694-1700.

6. Matveev E.Yu., Retivov V.M., Razgonyaeva G.A., Zhizhin K.Yu., Kuznetsov N.T. Cleavage of the cyclic substituent in the [B10H9O2C4H8]−, [B10H9OC4H8]−,and [B10H9OC5H10]− anions upon the interaction with negatively charged N-nucleophiles. Rus. J. Inorg. Chem. 2011; 56(10): 1549-1554.

7. Prikaznov A.V., Shmal’ko A.V., Sivaev I.B., Petrovskii P.V., Bragin V.I., Kisin A.V., Bregadze V.V. Synthesis of carboxylic acids based on the closodecaborate anion. Polyhedron. 2011; 30(9): 1494-1501.

8. Semioshkin A.S., Sivaev I.B., Bregadze V.I. Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. Dalton Trans. 2008; 8: 977-992.

9. Orlova A.V., Kondakov N.N., Kimel B.G., Kononov L.O., Kononova E.G., Sivaev I.B., Bregadze V.I. Synthesis of novel derivatives of closo‐dodecaborate anion with azido group at the terminal position of the spacer. Appl. Organomet. Chem. 2007; 21(2): 98-100.

10. Matveev E.Yu., Akimov S.S., Kubasov A.S., Nichugovskiy A.I., Nartov A.S., Retivov V.M., Zhizhin K.Yu., Kuznetsov N.T. Reaction of the [B10H9O2C4H8]–anion with C-nucleophiles. Rus. J. Inorg. Chem. 2017: 62(6): 808-813.

11. Matveev E.Yu., Razgonyaeva G.A., Mustyatsa V.N., Votinova N.A., Zhizhin K.Yu., Kuznetsov N.T. Oxonium derivatives of closo-decaborate in reactions with sulfur-containing nucleophiles. Russ. Chem. Bull. 2010; 59(3): 556-559.

12. Laskova J., Kozlova A., Białek-Pietras M., Studzińska M., Paradowska E., BregadzeV., Leśnikowski Z.J., Semioshkin A. Reactions of closo-dodecaborate amines. Towards novel bis-(closo-dodecaborates) and closo-dodecaborate conjugates with lipids and non-natural nucleosides. J. Organomet. Chem. 2016; 807: 29-35.

13. Kikuchi S., Kanoh D., Sato S., Sakurai Y., Suzuki M., Nakamura H. Maleimide-functionalized closo-dodecaborate albumin conjugates (MID-AC): Unique ligation at cysteine and lysine residues enables efficient boron delivery to tumor for neutron capture therapy. J. Contr. Release. 2016; 237: 160-167.

14. Laskova J., Kozlova A., Ananyev I., Bregadze V., Semioshkin A. 2-Hydroxyethoxy-closoundecahydrododecaborate(12) ([B12H11CH2CH2OH]2−)as a new prospective reagent for the preparation of closo-dodecaborate building blocks and thymidine and 2-deoxyuridine conjugates linked via short spacer. J.Organomet. Chem. 2017; 834: 64-72.

15. Kubasov A.S., Matveev E.Yu., Retivov V.M., Akimov S.S., Razgonyaeva G.A., Polyakova I.N., Votinova N.A., Zhizhin K.Yu., Kuznetsov N.T. Nickel(II) complexes with nitrogen-containing derivatives of the closo-decaborate anion. Russ. Chem. Bull. 2011; 63(1): 187-193.

16. Grin M.A., Semioshkin A.A., Titeev R.A., Nizhnik E.A., Grebenyuk J.N., Mironov A.F., Bregadze V.I. Synthesis of a cycloimide bacteriochlorin p conjugate with the closo-dodecaborate anion. Mendeleev Commun. 2007; 17(1): 14-15.

17. Inoue M.B., Inoue M., Fernando Q. Binuclear structure in the ammonium salt of gadolinium(III) diethylenetriaminepentaacetate, (NH4)4[Gd2(DTPA)2]·6H2O. Inorganica Chimica Acta. 1995; 232(1-2): 203-206.

18. Akimov S.S., Matveev E.Yu., Kubasov A.S., Razgonyaeva G.A., Zhizhin K.Yu., Kuznetsov N.T. Polydentate ligands based on closo-decaborate anion for the synthesis of gadolinium(III) complexes. Russ. Chem. Bull. 2013; 62(6): 1417-1421.

19. Nemoto H., Cai J., Nakamura H., Fujiwara M., Yamamoto Y. The synthesis of a carborane gadolinium–DTPA complex for boron neutron capture therapy. J. Organomet. Chem. 1999; 581(1-2): 170-175.

20. Toppino A., Bova M.E., Crich S.G., Alberti D., Diana E., Barge A., Aime S., Venturello P., Deagostino A.A. Carborane‐derivative “click” reaction under heterogeneous conditions for the synthesis of a promising lipophilic MRI/GdBNCT agent. Chem. Eur. J. 2013: 19(2): 721-728.

21. Goswami L.N., Ma L., Chakravarty Sh., Cai Q., Jalisatgi S.S., Hawthorne M.F. Discrete nanomolecular polyhedral borane scaffold supporting multiple gadolinium(III) complexes as a high performance MRI contrast agent. Inorg. Chem. 2013; 52(4):1694-1700.

22. Becker H., Domshke G., Fanghanel E. Organikum. Berlin: VEB Deutscher Verlag der Wissenschaften, 1990. 487 p.

23. Miller H.C., Miller N.E., Muetteries E.L. Synthesis of polyhedral boranes. J. Am. Chem. Soc. 1963; 85(23): 3885-3886.


Supplementary files

1. The interaction of the anion [B10H9O2C4H8]– with DTPA
Subject
Type Research Instrument
View (22KB)    
Indexing metadata

For citation:


Matveev E.Yu., Akimov S.S., Kubasov A.S., Retivov V.M., Zhizhin K.Yu., Kuznetsov N.T. THE METHOD FOR OBTAINING A DERIVATIVE CLOSO-DECABORATE ANION WITH PENDANTE DTPA-GROUP. Fine Chemical Technologies. 2019;14(1):59-65. (In Russ.) https://doi.org/10.32362/2410-6593-2019-14-1-59-65

Views: 199


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)