Preview

Fine Chemical Technologies

Advanced search

Antibacterial activity of green fabricated silver-doped titanates

https://doi.org/10.32362/2410-6593-2022-17-4-335-345

Abstract

Objectives. The study aimed to synthesize the multifunctional materials silver-added titanates via reduction of sol-gel fabricating titanates (Fe2TiO5 and NiTiO3) with Jasminium subtriplinerve Blume leaf extract.
Methods. The physicochemical characteristics of the obtained materials were determined by X-ray diffraction, energy dispersive X-Ray spectroscopy, Raman spectroscopy, Brunauer–Emmett–Teller specific surface area, scanning electron microscopy, and UV–Vis absorption spectroscopy.
Results. The results demonstrated good dispersion of silver on the surface of Fe2TiO5 and NiTiO3 to create photocatalysts with two light-absorbing regions. The obtained materials were applied as antibacterial agents in polluted water. The Ag–Fe2TiO5 (Ag–FTO) samples showed better properties and antibacterial activity than Ag–NiTiO3 (Ag–NTO) due to the better dispersion of silver nanoparticles on the FTO surface. Besides, the antibacterial results exhibit increased inhibiting activity against gram-negative (−) bacteria as compared with gram-positive (+) bacteria.
Conclusions. Nanomaterials Fe2TiO5 and NiTiO3 added Ag were successfully synthesized. These materials showed excellent inhibition against Baccilus cereus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Staphylococcus aureus. Additionally, the Ag–Fe2TiO5 samples showed much better antibacterial activity than the Ag–NiTiO3 sample.

About the Authors

A. C. Ha
Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT)
Viet Nam

Anh C. Ha, PhD, Doctor of Medicinal Chemistry, Faculty of Chemical Engineering

268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City

Linh Trung Ward, Thu Duc District, Ho Chi Minh City



T. Nguyen
Institute of Chemical Technology, Vietnam Academy of Science and Technology; Ho Chi Minh City Open University
Viet Nam

Tri Nguyen, PhD, Doctor of Chemical Engineering

01A TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City

97 Vo Van Tan Street, District 3, Ho Chi Minh City



P. A. Nguyen
Institute of Chemical Technology, Vietnam Academy of Science and Technology
Viet Nam

Anh Ph. Nguyen, Master of Chemical Engineering

01A TL29 Street, Thanh Loc Ward, District 12, Ho Chi Minh City



V. M. Nguyen
Ho Chi Minh City Open University
Viet Nam

Minh V. Nguyen, Master of Biotechnology

97 Vo Van Tan Street, District 3, Ho Chi Minh City



References

1. Xiang W., et al. Biochar technology in wastewater treatment: A critical review. Chemosphere. 2020;252:126539. https://doi.org/10.1016/j.chemosphere.2020.126539

2. Yaqoob A.A., Parveen T., Umar K., Mohamad Ibrahim M.N. Role of nanomaterials in the treatment of wastewater: A review. Water. 2020;12(2):495. https://doi.org/10.3390/w12020495

3. Crini G., Lichtfouse E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019;17(1):145–155. https://doi.org/10.1007/s10311-018-0785-9

4. Salgot M., Folch M. Wastewater treatment and water reuse. Curr. Opin. Environ. Sci. Health. 2018;2:64–74. https://doi.org/10.1016/j.coesh.2018.03.005

5. Rizzo L., et al. Best available technologies and treatment trains to address current challenges in urban wastewater reuse for irrigation of crops in EU countries. Sci. Total Environ. 2020;710:36312. https://doi.org/10.1016/j.scitotenv.2019.136312

6. Dai Y., Poidevin C., Ochoa‐Hernández C., Auer A.A., Tüysüz H. A supported bismuth halide perovskite photocatalyst for selective aliphatic and aromatic C–H bond activation. Angew. Chemie Int. Ed. 2020;59(14):5788–5796. https://doi.org/10.1002/anie.201915034

7. Kanhere P., Chen Z. A review on visible light active perovskite-based photocatalysts. Molecules. 2014;19(12):19995–20022. https://doi.org/10.3390/molecules191219995

8. Nikolic M., Lukovic M., Vasiljevic Z., Labus N., Aleksic O. Humidity sensing potential of Fe2TiO5–pseudobrookite. J. Mater. Sci.: Mater. Electron. 2018:29(11):9227–9238. https://doi.org/10.1007/s10854-018-8951-1

9. Thambiliyagodage C., Mirihana S., Wijesekera R., Dinu S.M., Kandanapitiye M., Bakker M. Fabrication of Fe2TiO5/TiO2 binary nanocomposite from natural ilmenite and their photocatalytic activity under solar energy. Curr. Res. Green Sustain. Chem. 2021;4:100156. https://doi.org/10.1016/j.crgsc.2021.100156

10. Lou Z., Li Y., Song H., Ye Z., Zhu L. Fabrication of Fe2TiO5/TiO2 nanoheterostructures with enhanced visible-light photocatalytic activity. RSC Advances. 2016;6(51):45343–45348. https://doi.org/10.1039/C6RA06763H

11. Lakhera S.K., et al. Enhanced photocatalytic degradation and hydrogen production activity of in situ grown TiO2 coupled NiTiO3 nanocomposites. Appl. Surf. Sci. 2018:449:790–798. https://doi.org/10.1016/j.apsusc.2018.02.136

12. Li H., Huang W., Wang G.-L., Wang W.-L., Cui X., Zhuang J. Transcriptomic analysis of the biosynthesis, recycling, and distribution of ascorbic acid during leaf development in tea plant (Camellia sinensis (L.) O. Kuntze). Sci. Rep. 2017;7(1):46212. https://doi.org/10.1038/srep46212

13. Xing C., et al. Porous NiTiO3/TiO2 nanostructures for photocatatalytic hydrogen evolution. J. Mater. Chem. A. 2019;7(28):17053–17059. https://doi.org/10.1039/C9TA04763H

14. Ngan D.H., Hoai H.T.C., Huong L.M., Hansen P.E., Vang O. Bioactivities and chemical constituents of a Vietnamese medicinal plant Che Vang, Jasminum subtriplinerve Blume (Oleaceae). Nat. Prod. Res. 2008:22(11):942–949. https://doi.org/10.1080/14786410701647119

15. Nguyen T.M.-T., et al. Novel biogenic silver nanoparticles used for antibacterial effect and catalytic degradation of contaminants. Res. Chem. Intermed. 2020; 46(3): 1975–1990. https://doi.org/10.1007/s11164-019-04075-w

16. Nguyen P.A., et al. Sunlight irradiationassisted green synthesis, characteristics and antibacterial activity of silver nanoparticles using the leaf extract of Jasminum subtriplinerve Blume. J. Plant Biochem. Biotechnol. 2022;31:202–205. https://doi.org/10.1007/s13562-021-00667-z

17. Nguyen P.A., et al. Envirronmentally friendly fabrication of Fe2TiO5-TiO2 nanocomposite for enhanced photodegradation of cinnamic acid solution. Adv. Natural Sci.: Nanosci. Nanotechnol. 2022;12(4):045015. https://doi.org/10.1088/2043-6262/ac498d

18. Nguyen P.A., et al. Exceptional photodecomposition activity of heterostructure NiTiO3–TiO2 catalyst. J. Sci.: Adv. Mater. Dev. 2022;7(1):100407. https://doi.org/10.1016/j.jsamd.2021.100407

19. Nguyen D.T., Ha C.A., Nguyen T., Phuong P.H., Hoang T.C. A low temperature fabrication and photoactivity of Al2TiO5 in cinnamic acid degradation. Mater. Trans. 2019;60(9):2022–2027. https://doi.org/10.2320/matertrans.M2019076

20. Nguyen P.A., Duong N.L., Nguyen V.M., Nguyen T. Positive effects of the ultrasound on biosynthesis, characteristics and antibacterial activity of silver nanoparticles using Fortunella Japonica. Mater. Trans. 2019;60(9):2053–2058. https://doi.org/10.2320/matertrans.M2019065

21. Rodrigues J.E., et al. Spin-phonon coupling in uniaxial anisotropic spin-glass based on Fe2TiO5 pseudobrookite. J. Alloys Comp. 2019;799:563–572. https://doi.org/10.1016/j.jallcom.2019.05.343

22. Burhan M., Shahzad M.W., Ng K.C. Energy distribution function based universal adsorption isotherm model for all types of isotherm. Int. J. Low-Carbon Technol. 2018;13(3):292–297. https://doi.org/10.1093/ijlct/cty031

23. Barone P., Stranges F., Barberio M., Renzelli D., Bonanno A., Xu F. Study of Band Gap of Silver Nanoparticles–Titanium Dioxide Nanocomposites. J. Chem. 2014;2014:589707. http://dx.doi.org/10.1155/2014/589707

24. Ankanna S., Prasad T.N.V.K.V., Elumalai E., Savithramma N. Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem bark. Dig. J. Nanomater. Biostruct. 2010;5(2):369–372.

25. Morones J.R., et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346–2353. https://doi.org/10.1088/0957-4484/16/10/059

26. Krishnaraj C., et al. Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf. B: Biointerfaces. 2010;76(1):50–56. https://doi.org/10.1016/j.colsurfb.2009.10.008

27. Manjunatha C. et al. Perovskite lanthanum aluminate nanoparticles applications in antimicrobial activity, adsorptive removal of Direct Blue 53 dye and fluoride. Mater. Sci. Eng.: C Mater. Biol. Appl. 2019;101:674–685. https://doi.org/10.1016/j.msec.2019.04.013

28. Singh C., Wagle A., Rakesh J.V. Doped LaCoO3 perovskite with Fe: A catalyst with potential antibacterial activity. Vacuum. 2017;146:468–473. https://doi.org/10.1016/j.vacuum.2017.06.039

29. Dakal T.C., Kumar A., Majumdar R.S., Yadav V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016;7:1831. https://doi.org/10.3389/fmicb.2016.01831

30. Yin I.X., Zhang J., Zhao I.S., Mei M.L., Li Q., Chu C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomedicine. 2020;15:2555–2562. https://doi.org/10.2147/IJN.S246764


Supplementary files

1. UV–Vis diffuse reflectance spectra and Tauc plot of the Ag–NTO sample
Subject
Type Research Instrument
View (59KB)    
Indexing metadata ▾
  • Nanomaterials Fe2TiO5 and NiTiO3 added Ag were successfully synthesized.
  • These materials showed excellent inhibition against Baccilus cereus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Staphylococcus aureus.
  • Additionally, the Ag–Fe2TiO5 samples showed much better antibacterial activity than the Ag–NiTiO3 sample.

Review

For citations:


Ha A.C., Nguyen T., Nguyen P.A., Nguyen V.M. Antibacterial activity of green fabricated silver-doped titanates. Fine Chemical Technologies. 2022;17(4):335-345. https://doi.org/10.32362/2410-6593-2022-17-4-335-345

Views: 697


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)