Synthesis of 5-oxymethyl-1,2,4-triazole-3-carboxamides
https://doi.org/10.32362/2410-6593-2022-17-4-311-322
Abstract
Objectives. A key step in the synthesis of natural nucleoside analogs is the formation of a glycosidic bond between the carbohydrate fragment and the heterocyclic base. Glycosylation methods differ in terms of regio- and stereoselectivity. A promising method for the highly specific synthesis of new pharmacologically active compounds involves an enzymatic reaction catalyzed by genetically engineered nucleoside phosphorylases. This study is devoted to the synthesis of a library of analogs of nucleoside heterocyclic bases—5-oxymethyl-1,2,4-triazole- 3-carboxamides—in order to investigate the substrate specificity of genetically engineered nucleoside phosphorylases.
Methods. A method of cyclization of acylamidrazones obtained from the single synthetic precursor β-N-tert-butyloxycarbonyl-oxalamidrazone was used to parallel-synthesize new 5-alkoxy/ aryloxymethyl-1,2,4-triazole-3-carboxamides. Silica gel column chromatography was used to isolate and purify the synthesized compounds. A complex of physicochemical analysis methods (nuclear magnetic resonance spectroscopy, chromatography, and mass spectrometry) confirmed the structure of the compounds obtained in the work.
Results. 5-alkoxy/aryloxymethyl-1,2,4-triazole-3-carboxamides were obtained to study the substrate specificity of genetically engineered nucleoside phosphorylases. The possibility of obtaining new nucleoside analogs by the chemico-enzymatic method was demonstrated on the basis of preliminary assessment results.
Conclusions. The physicochemical characteristics of a series of novel 5-alkoxy/aryloxymethyl- 1,2,4-triazole-3-carboxamides were studied along with their potential to act as substrates for the transglycosylation reaction catalyzed by nucleoside phosphorylases.
Keywords
About the Authors
L. E. GrebenkinaRussian Federation
Lyubov E. Grebenkina, Assistant, Department of Biotechnology and Industrial Pharmacy
86, Vernadskogo pr., Moscow, 119571
Scopus Author ID 57189663430
RSCI SPIN-code 6518-1280
A. N. Prutkov
Russian Federation
Alexander N. Prutkov, Postgraduate Student, Department of Biotechnology and Industrial Pharmacy
86, Vernadskogo pr., Moscow, 119571
ResearcherID G-4025-2016
Scopus Author ID 56228508300
RSCI SPIN-code 2965-1335
A. V. Matveev
Russian Federation
Andrey V. Matveev, Cand. Sci. (Chem.), Associate Professor, Department of Biotechnology and Industrial Pharmacy
86, Vernadskogo pr., Moscow 119571
Scopus Author ID 7102723461
RSCI SPIN-code 7420-3188
M. V. Chudinov
Russian Federation
Mikhail V. Chudinov, Cand. Sci. (Chem.), Associate Professor, Department of Biotechnology and Industrial Pharmacy
86, Vernadskogo pr., Moscow 119571
ResearсherID L-5728-2016
Scopus Author ID 6602589900
RSCI SPIN-code 3920-8067
References
1. Jordheim L.P., Durantel D., Zoulim F., Dumontet C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov. 2013;12(6):447–464. https://doi.org/10.1038/nrd4010
2. Shelton J., Lu X., Hollenbaugh J.A., Cho J.H., Amblard F., Schinazi R.F. Metabolism, Biochemical Actions, and Chemical Synthesis of Anticancer Nucleosides, Nucleotides, and Base Analogs. Chem. Rev. 2016;116(23):14379–14455. https://doi.org/10.1021/acs.chemrev.6b00209
3. Thomson J.M., Lamont I.L. Nucleoside analogues as antibacterial agents. Front. Microbiol. 2019;10:952. https://doi.org/10.3389/fmicb.2019.00952
4. Geraghty R.J., Aliota M.T., Bonnac L.F. Broadspectrum antiviral strategies and nucleoside analogues. Viruses. 2021;13(4):667. https://doi.org/10.3390/v13040667
5. De Clercq E., Li G. Approved antiviral drugs over the past 50 years. Clin. Microbiol. Rev. 2016;29(3):695–747. https://doi.org/10.1128/CMR.00102-15
6. De Clercq E. New Nucleoside Analogues for the Treatment of Hemorrhagic Fever Virus Infections. Chem. Asian J. 2019;14(22):3962–3968. https://doi.org/10.1002/asia.201900841
7. Kasianenko K.V., Lvov N.I., Maltsev O.V., Zhdanov K.V. Nucleoside analogues for the treatment of influenza: History and experience. Journal Infektology. 2019;11(3):20–26 (in Russ.). https://doi.org/10.22625/2072-6732-2019-11-3-20-26
8. Pruijssers A.J., Denison M.R. Nucleoside analogues for the treatment of coronavirus infections. Curr. Opin. Virol. 2019;35:57–62. https://doi.org/10.1016/j.coviro.2019.04.002
9. Borbone N., Piccialli G., Roviello G.N., Oliviero G. Nucleoside analogs and nucleoside precursors as drugs in the fight against SARS-CoV-2 and other coronaviruses. Molecules. 2021;26(4):986. https://doi.org/10.3390/molecules26040986
10. Yoshida Y., Honma M., Kimura Y., Abe H. Structure, Synthesis and Inhibition Mechanism of Nucleoside Analogues as HIV-1 Reverse Transcriptase Inhibitors (NRTIs). ChemMedChem. 2021;16(5):743–766. https://doi.org/10.1002/cmdc.202000695
11. Zhang Y., Liu X., Lin Y., Lian B., Lan W., Iovanna J.L., et al. Novel triazole nucleoside analogues promote anticancer activity: Via both apoptosis and autophagy. Chem. Commun. 2020;56(69):10014–10017. https://doi.org/10.1039/D0CC04660D
12. Wang D., Yu C., Xu L., Shi L., Tong G., Wu J., et al. Nucleoside Analogue-Based Supramolecular Nanodrugs Driven by Molecular Recognition for Synergistic Cancer Therapy. J. Am. Chem. Soc. 2018;140(28):8797–8806. https://doi.org/10.1021/jacs.8b04556
13. Zeng X., Hernandez-Sanchez W., Xu M., Whited T.L., Baus D., Zhang J., et al. Administration of a Nucleoside Analog Promotes Cancer Cell Death in a Telomerase- Dependent Manner. Cell Reports. 2018;23(10):3031–3041. https://doi.org/10.1016/j.celrep.2018.05.020
14. Sun R., Wang L. Inhibition of Mycoplasma pneumoniae growth by FDA-approved anticancer and antiviral nucleoside and nucleobase analogs. BMC Microbiol. 2013;13:184. https://doi.org/10.1186/1471-2180-13-184
15. Pastuch-Gawolek G., Gillner D., Krol E., Walczak K., Wandzik I. Selected nucleos(t)ide-based prescribed drugs and their multi-target activity. Eur. J. Pharmacol. 2019;865:172747. https://doi.org/10.1016/j.ejphar.2019.172747
16. Seley-Radtke K.L., Yates M.K. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antiviral Res. 2018;154:66–86. https://doi.org/10.1016/j.antiviral.2018.04.004
17. Yates M.K., Seley-Radtke K.L. The evolution of antiviral nucleoside analogues: A review for chemists and non-chemists. Part II: Complex modifications to the nucleoside scaffold. Antiviral Res. 2019;162:5–21. https://doi.org/10.1016/j.antiviral.2018.11.016
18. Zeidler J., Baraniak D., Ostrowski T. Bioactive nucleoside analogues possessing selected five-membered azaheterocyclic bases. Eur. J. Med. Chem. 2015;97:409–418. https://doi.org/10.1016/j.ejmech.2014.11.057
19. Merino P. (Ed.). Chemical Synthesis of Nucleoside Analogues. NY: John Wiley & Sons, Inc.; 2013. 912 p. ISBN: 978-1-118-49808-8
20. Mikhailopulo I.A., Miroshnikov A.I. Biologically important nucloesides: modern trends in biotechnology and application. Mendeleev Commun. 2011;21(2):57–68. https://doi.org/10.1016/j.mencom.2011.03.001
21. Yehia H., Kamel S., Paulick K., Wagner A., Neubauer P. Substrate spectra of nucleoside phosphorylases and their potential in the production of pharmaceutically active compounds. Curr. Pharm. Des. 2017;23(45):6913–6935. http://dx.doi.org/10.2174/1381612823666171024155811
22. Kamel S., Yehia H., Neubauer P., Wagner A. Enzymatic Synthesis of Nucleoside Analogues by Nucleoside Phosphorylases. In: Lucas F.J., Rius M.-J.C. (Eds.). Enzymatic and Chemical Synthesis of Nucleic Acid Derivatives. Wiley-VCH Verlag GmbH & Co; 2018. P. 1–28. https://doi.org/10.1002/9783527812103.ch1
23. Barai V.N., Zinchenko A.I., Eroshevskaya L.A., Kalinichenko E.N., Kulak T.I., Mikhailopulo I.A. A Universal Biocatalyst for the Preparation of Base- and Sugar-Modified Nucleosides via an Enzymatic Transglycosylation. Helv. Chim. Acta. 2002;85(7):1901–1908. https://doi.org/10.1002/1522-2675(200207)85:<1901::AID-HLCA1901>3.0.CO;2-C
24. Konstantinova I.D., Leont’eva N.A., Galegov G.A., Ryzhova O.I., Chuvikovskii D.V., Antonov K.V., et al. Ribavirin: Biotechnological synthesis and effect on the reproduction of Vaccinia virus. Russ. J. Bioorg. Chem. 2004;30(6):553–560. https://doi.org/10.1023/B:RUBI.0000049772.18675.34
25. Konstantinova I.D., Esipov R.S., Muravieva T.I., Taran S.A., Verevkina K.N., Gurevich A.I., et al. Method for preparing 1-β-D-ribofuranosyl-1,2,4-triazole-3-carboxyamide (ribavirin): RF Pat. 2230118. Publ. 10.03.2004 (in Russ.).
26. Sakharov V., Baykov S., Konstantinova I., Esipov R., Dorogov M. An Efficient Chemoenzymatic Process for Preparation of Ribavirin. International Journal of Chemical Engineering. 2015;2015:734851. https://doi.org/10.1155/2015/734851
27. Rabuffetti M., Bavaro T., Semproli R., Cattaneo G., Massone M., Morelli C.F., et al. Synthesis of Ribavirin, Tecadenoson, and Cladribine by Enzymatic Transglycosylation. Catalysts. 2019;9(4):355. https://doi.org/10.3390/catal9040355
28. Fateev I.V., Antonov K.V., Konstantinova I.D., Muravyova T.I., Seela F., Esipov R.S., et al. The chemoenzymatic synthesis of clofarabine and related 2’-deoxyfluoroarabinosyl nucleosides: the electronic and stereochemical factors determining substrate recognition by E. coli nucleoside phosphorylases. Beilstein J. Org. Chem. 2014;10:1657–1669. https://doi.org/10.3762/bjoc.10.173
29. Zhou X., Szeker K., Jiao L.-Y., Oestreich M., Mikhailopulo I.A., Neubauer P. Synthesis of 2,6-Dihalogenated Purine Nucleosides by Thermostable Nucleoside Phosphorylases. Adv. Synth. Catal. 2015;357(6):1237–1244. https://doi.org/10.1002/adsc.201400966
30. Vichier-Guerre S., Dugue L., Bonhomme F., Pochet S. Expedient and generic synthesis of imidazole nucleosides by enzymatic transglycosylation. Org. Biomol. Chem. 2016;14(14):3638–3653. https://doi.org/10.1039/C6OB00405A
31. Hatano A., Wakana H., Terado N., Kojima A., Nishioka C., Iizuka Y., et al. Bio-catalytic synthesis of unnatural nucleosides possessing a large functional group such as a fluorescent molecule by purine nucleoside phosphorylase. Catal. Sci. Technol. 2019;9(18):5122–5129. https://doi.org/10.1039/C9CY01063G
32. Original Russian Text: Konstantinova I.D., Chudinov M.V., Fateev I.V., Matveev A.V., Zhurilo N.I., Shvets V.I., Miroshnikov A.I. Nucleosides of 1,2,4-triazole: Possibilities and limitations of the chemical-enzymatic method of preparation. Bioorganicheskaya Khimiya. 2013;39(1):61–80 (in Russ.). https://doi.org/10.7868/S0132342313010053
33. Matveev A.V., Prutkov A.N., Chudinov M.V. Method of producing 5-substituted 1,2,4-triazole-3-carboxylic acids and derivatives thereof from universal precursor: RF Pat. 2605414 Publ. 20.12.2015 (in Russ.).
34. Chudinov M.V., Matveev A.V., Zhurilo N.I., Prutkov A.N., Shvets V.I. An Efficient Route to Ethyl 5-Alkyl- (Aryl)-1H-1,2,4-triazole-3-carboxylates. J. Heterocycl. Chem. 2015;52(5):1273–1277. https://doi.org/10.1002/jhet.1934
35. Matveev A.V., Grebenkina L.E., Prutkov A.N., Chudinov M.V. 5‐Substituted 1,2,4‐Triazole‐3‐Carboxylates and 5‐Substituted Ribavirin Analogs Synthesis. Curr. Protoc. 2021;1(11):e281. https://doi.org/10.1002/cpz1.281
Supplementary files
![]() |
1. 5-Substituted 1,2,4-triazole-3-carboxamide derivatives main synthesis methods (Boc is tert-butyloxycarbonyl; Et is ethyl; Py is pyridine) | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(13KB)
|
Indexing metadata ▾ |
- 5-alkoxy/aryloxymethyl-1,2,4-triazole-3-carboxamides were obtained to study the substrate specificity of genetically engineered nucleoside phosphorylases.
- The possibility of obtaining new nucleoside analogs by the chemico-enzymatic method was demonstrated on the basis of preliminary assessment results.
Review
For citations:
Grebenkina L.E., Prutkov A.N., Matveev A.V., Chudinov M.V. Synthesis of 5-oxymethyl-1,2,4-triazole-3-carboxamides. Fine Chemical Technologies. 2022;17(4):311-322. https://doi.org/10.32362/2410-6593-2022-17-4-311-322