Preview

Fine Chemical Technologies

Advanced search

DETECTION OF HYDROPEROXIDES IN SOLUTIONS OF PHOTOOXIDIZED PSORALEN

https://doi.org/10.32362/2410-6593-2019-14-1-32-38

Abstract

Photooxidized psoralen solutions possess a variety of biological effects, which implementation mechanism may presumably involve hydroperoxides. Here, the hydroperoxide content in photooxidized psoralen solutions was assessed using photometric FOX assay (from Ferrous Oxidation + Xylenol Orange). FOX reagent with 10× content of Xylenol Orange, modified for quantitative analysis of up to 50 μM of hydroperoxides in aqueous phase was used in experiments. During photooxidation of 0.1 mM psoralen in phosphate buffer solution, hydroperoxide production increases with dose of UVA irradiation (~2.5 μM eq. of H2O2 for dose of 252 kJ/m2 and ~11 μM eq. of H2O2 for dose of 1512 kJ/m2) and reaches ~16.5 μM eq. of H2O2 at the highest dose investigated (3024 kJ/m2). A comparison of kinetics of psoralen photolysis and hydroperoxide generation allows us to suggest that generation of hydroperoxide results from the secondary photochemical processes involving psoralen photoproducts, presumably from photoinduced autooxidation of aldehydic photoproducts of psoralen.

About the Authors

V. V. Skarga
Pirogov Russian National Research Medical University
Russian Federation

Research Analyst, Medical Chemistry and Toxicology Unit

1, Ostrovityanova Str., Moscow 117997, Russia



E. V. Nevezhin
Pirogov Russian National Research Medical University
Russian Federation

Postgraduate Student of the Chair of Physics and Mathematics; Research Analyst, Medical Chemistry and Toxicology Unit,

1, Ostrovityanova Str., Moscow 117997, Russia



A. А. Matrosov
Pirogov Russian National Research Medical University
Russian Federation

Research Analyst, Medical Chemistry and Toxicology Unit,

1, Ostrovityanova Str., Moscow 117997, Russia



V. V. Negrebetsky
Pirogov Russian National Research Medical University
Russian Federation

D.Sc. (Chemistry), Professor of RAS, Head of the Medical Chemistry and Toxicology Unit, 

1, Ostrovityanova Str., Moscow 117997, Russia



M. V. Malakhov
Pirogov Russian National Research Medical University
Russian Federation

Ph.D. (Biology), Leading Researcher of the Medical Chemistry and Toxicology Unit; Associate Professor of the Chair of Physics and Mathematics,

1, Ostrovityanova Str., Moscow 117997, Russia



References

1. Racz E., Prens E.P. Phototherapy and photochemotherapy for psoriasis. Dermatol. Clin. 2015; 33: 79-89.

2. Trautinger F., Just U., Knobler R. Photopheresis (extracorporeal photochemotherapy). Photochem. Photobiol. Sci. 2013; 12: 22-28.

3. Caffieri S. Furocoumarin photolysis: Chemical and biological aspects. Photochem. Photobiol. Sci. 2002: 1: 149-157.

4. Potapenko A.Ya., Kyagova A.A., Bezdetnaya L.N., Lysenko E.P., Chernyakhovskaya I.Yu., Bekhalo V.A., Nagurskaya E.V., Nesterenko V.A., Korotky N.G., Akhtyamov S.N., Lanshchikova T.M. Products of psoralen photooxidation possess immunomodulative and antileukemic effects. Photochem. Photobiol. 1994; 60: 171-174.

5. Kyagova A.A., Malakhov M.V., Potapenko A.Ya. Immunosuppression caused by photochemo and photodynamic therapy: Focus on photosensitizer photoproducts. In: Taylor C.B., ed. Immunosuppression: New research. Nova Science Publishers, 2009: 167-183.

6. Nevezhin E.V., Vlasova N.V., Pyatnitskiy I.A., Lysenko E.P., Malakhov M.V. On the mechanism of erythrocyte hemolysis induced by photooxidized psoralen. Biochemistry (Moscow). 2015; 80(6): 763-768.

7. Potapenko A.Y., Saparov S.M., Agamalieva M.A., Lysenko E.P., Bezdetnaya L.N., Sukhorukov V.L. Fe2+ ions and reduced glutathione – chemical activators of psoralen-sensitized photohaemolysis. J. Photochem. Photobiol. B. 1993; 17: 69-75.

8. Lysenko E.P., Melnikova V.O., Andina E.S., Wunderlich S., Pliquett F., Potapenko A.Y. Effects of glutathione peroxidase and catalase on hemolysis and methemoglobin modifications induced by photooxidized psoralen. J. Photochem. Photobiol. B. 2000; 56: 187-195.

9. Potapenko A.Ya., Kyagova A.A., Andina E.S., Zhuravel N.N., Lysenko E.P., Möller M., Stopper H., Adam W., Saha-Möller C.R. Photohemolysis sensitized by the furocoumarin imperatorin and its oxyfunctionalized derivatives. Photochem. Photobiol. 1999; 69: 410-420.

10. Kyagova A., Potapenko A., Möller M., Stopper H., Adam W. Photohemolysis sensitized by the furocoumarin derivative alloimperatorin and its hydroperoxide photooxidation product. Photochem. Photobiol. 2014; 90: 162-170.

11. Rodenko I.N., Osipov A.N., Lysenko E.P., Potapenko A.Y. Degradation of psoralen photooxidation products induced by ferrous ions. J. Photochem. Photobiol. B. 1993; 19: 39-48.

12. Potapenko A.Ya., Malakhov M.V., Kyagova A.A. Photobiophysics of furocoumarins. Biophysics. 2004; 49(2): 307-324.

13. Marley K.A., Larson R.A. A new photoproduct from furocoumarin photolysis in dilute aqueous solution: 5-formyl-6-hydroxybenzofuran. Photochem. Photobiol. 1994; 59: 503-505.

14. Marley K.A., Larson R.A., Davenport R. Alternative mechanisms of psoralen phototoxicity. ACS Symposium Series. 1995; 616 (Ch. 15): 179-188

15. Aboul-Enein H.Y., Kladna A., Kruk I., Lichszteld K., Michalska T. Effect of psoralens on Fenton-like reaction generating reactive oxygen species. Biopolymers. 2003; 72(1): 59-68.

16. Gupta B.L. Microdetermination techniques for H2O2 in irradiated solutions. Microchem. J. 1973; 18: 363-374.

17. Jiang Z.Y., Woollard A.C., Wolff S.P. Hydrogen peroxide production during experimental protein glycation. FEBS Lett. 1990; 268: 69-71.

18. Wolff S. Ferrous Ion oxidation in presence of ferric ion indicator Хylenol Оrange for measurement of hydroperoxides. Methods in Enzymology. 1994; 233: 182-189.

19. Gay C., Collins J., Gebicki J. Determination of iron in solutions with the ferric-Хylenol Оrange complex. Anal. Biochem. 1999; 273: 143-148.

20. Gay C., Collins J., Gebicki J. Hydroperoxide assay with the ferric-Хylenol Оrange complex. Anal. Biochem. 1999; 273: 149-155.

21. Bou R., Codony R., Tres A., Decker E., Guardiola F. Determination of hydroperoxides in foods and biological samples by the ferrous oxidationХylenol Оrange method: A review of the factors that influence the method's performance. Anal. Biochem. 2008; 377: 1-15.

22. Winterbourne C.C., Parsons-Mair H.N., Gebicki S.M., Gebicki J.M., Davies M.J. Requirements for superoxide-dependent tyrosine hydroperoxide formation in peptides. Biochem. J. 2004; 381: 241-248.

23. Mizuguchi H., Takao Y. Visual threshold detection of trace metal ions using a bi-functional metallochromic reagent. Analitycal Sci. 2001; 17 (Suppl.): 1687-1689.


Supplementary files

1. Monitoring changes in the spectral properties of POP solutions and photolysis of psoralen (in the insertion).
Subject
Type Research Instrument
View (102KB)    
Indexing metadata ▾

Review

For citations:


Skarga V.V., Nevezhin E.V., Matrosov A.А., Negrebetsky V.V., Malakhov M.V. DETECTION OF HYDROPEROXIDES IN SOLUTIONS OF PHOTOOXIDIZED PSORALEN. Fine Chemical Technologies. 2019;14(1):32-38. (In Russ.) https://doi.org/10.32362/2410-6593-2019-14-1-32-38

Views: 789


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)