Preview

Тонкие химические технологии

Расширенный поиск

Комбинация Phyllanthus amarus Schum. & Thonn. и Gymnema sylvestre R. Br. для лечения диабета и его долгосрочных осложнений

https://doi.org/10.32362/2410-6593-2021-16-3-232-240

Аннотация

Цели. Количество пациентов с диабетом растет, у них часто возникают долгосрочные осложнения, поэтому поиск методов лечения этого заболевания и коррекции его осложнений является важным для всего мирового медицинского сообщества. Phyllanthus amarus Schum. & Thonn. (PA) и Gymnema sylvestre R. Br. (GS) – распространенные во Вьетнаме лекарственные растения, используемые в традиционной медицине, включая лечение диабета. Цель данного исследования – скомбинировать PA и GS, чтобы расширить их биологическую активность и усилить антидиабетический, антиоксидантный и противовоспалительный эффект.
Методы. Порошки листьев PA и GS смешивали в различных соотношениях и экстрагировали 95% этанолом. Полученные этанольные экстракты использовались для определения биологически активных соединений, биологической активности и оптимального соотношения компонентов смеси.
Результаты. Оптимальное соотношение PA и GS, определенное в исследовании, равно 2 : 1 (г/г). Экстракция 95% этанолом данного образца (2 : 1) при 50 °C в течение двух часов при соотношении сырье/эстрагент 1 : 10 позволила получить высокий выход экстрактивных веществ, равный 14.37%. Этот образец продемонстрировал хорошую активность ингибирования α-глюкозидазы с половинной максимальной ингибирующей концентрацией (IC50) 9.74 мкг/мл, антиоксидантную активность с IC50 29.87 мкг/мл и противовоспалительную активность с IC15 400 мкг/мл.
Выводы. Исследование подтвердило, что сочетание PA и GS может значительно ингибировать α-глюкозидазу, а также обладает антиоксидантным и противовоспалительным эффектами.

Об авторах

Т. М. Ле
Химико-технологический факультет, Технологический университет Хошимина; Вьетнамский национальный университет
Вьетнам

Тан М. Ле, аспирант

268 Ли Тхыонг Кьет ул., Район 10, г. Хошимин

Линь Чунг Уорд, Район Тхёк, г. Хошимин



Ч.Д. П. Нгуен
Химико-технологический факультет, Технологический университет Хошимина; Вьетнамский национальный университет
Вьетнам

Чин Д.П. Нгуен, аспирант

268 Ли Тхыонг Кьет ул., Район 10, г. Хошимин

Линь Чунг Уорд, Район Тхёк, г. Хошимин



А. К. Ха
Химико-технологический факультет, Технологический университет Хошимина; Вьетнамский национальный университет
Вьетнам

Ань К. Ха, PhD, к.х.н.

268 Ли Тхыонг Кьет ул., Район 10, г. Хошимин

Линь Чунг Уорд, Район Тхёк, г. Хошимин



Список литературы

1. Do N.H.N., Le T.M., Nguyen C.D.P., Ha A.C. Optimization of total flavonoid content of ethanolic extract of Persicaria pulchra (Bl.) Soják for the inhibition of α-glucosidase enzyme. Fine Chem. Technol. 2020;15(4):39–50. https://doi.org/10.32362/2410-6593-2020-15-4-39-50

2. Andersson E., Persson S., Hallén N., Ericsson Å., Thielke D., Lindgren P., et al. Costs of diabetes complications: hospital-based care and absence from work for 392,200 people with type 2 diabetes and matched control participants in Sweden. Diabetologia. 2020;63(12):2582–2594. https://doi.org/10.1007/s00125-020-05277-3

3. Shaw J.E., Sicree R.A., Zimmet P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87(1):4–14. https://doi.org/10.1016/j.diabres.2009.10.007

4. Ahmed N. Advanced glycation endproducts— role in pathology of diabetic complications. Diabetes Res. Clin. Pract. 2005;67(1):3–21. https://doi.org/10.1016/j.diabres.2004.09.004

5. Oguntibeju O.O. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int. J. Physiol. Pathophysiol. Pharmacol. 2019;11(3):45–63.

6. Nguyen V.T., Van Vuong Q., Bowyer M.C., Van Altena I.A., Scarlett C.J. Effects of different drying methods on bioactive compound yield and antioxidant capacity of Phyllanthus amarus. Dry. Technol. 2015;33(8):1006–1017. https://doi.org/10.1080/07373937.2015.1013197

7. Appiah-Opong R., Nyarko A.K., Dodoo D., Gyang F.N., Koram K.A., Ayisi N.K. Antiplasmodial activity of extracts of Tridax procumbens and Phyllanthus amarus in in vitro Plasmodium falciparum culture systems. Ghana Med. J. 2011;45(4):143–150.

8. Patel J.R., Tripathi P., Sharma V., Chauhan N.S., Dixit V.K. Phyllanthus amarus: Ethnomedicinal uses, phytochemistry and pharmacology: A review. J. Ethnopharmacol. 2011;138(2):286– 313. https://doi.org/10.1016/j.jep.2011.09.040

9. Ogunmoyole T., Awodooju M., Idowu S., Daramola O. Phyllanthus amarus extract restored deranged biochemical parameters in rat model of hepatotoxicity and nephrotoxicity. Heliyon. 2020;6(12):e05670. https://doi.org/10.1016/j.heliyon.2020.e05670

10. Nguyen V.T., Sakoff J.A., Scarlett C.J. Physicochemical properties, antioxidant and cytotoxic activities of crude extracts and fractions from Phyllanthus amarus. Medicines. 2017;4(2):42. https://doi.org/10.3390/medicines4020042

11. Noor N.A.M., Nafiah M.A., Tuan Johari S.A.T., Hasnan M.H.H., Tan S.P., Liew S.Y., et al. Anticancer Effect of Hypophyllanthin, Niranthin and Lintetralin From Phyllanthus amarus on HeLa Cells And NIH/3T3 Cells. Int. J. Recent Technol. Eng. 2019;8(2S7):106–110. https://doi.org/10.35940/ijrte.B1024.0782S719

12. Harikrishnan H., Jantan I., Haque M.A., Kumolosasi E. Anti-inflammatory effects of Phyllanthus amarus Schum. & Thonn. through inhibition of NF-κB, MAPK, and PI3K-Akt signaling pathways in LPS-induced human macrophages. BMC Complement. Altern. Med. 2018;18(1):224. https://doi.org/10.1186/s12906-018-2289-3

13. Ojezele M.O., Moke E.G., Onyesom I. Impact of generic antimalarial or Phyllanthus amarus and vitamin coadministration on antioxidant status of experimental mice infested with Plasmodium berghei. Beni-Suef Univ. J. Basic Appl. Sci. 2017;6(3):260–265. https://doi.org/10.1016/j.bjbas.2017.04.008

14. Ajitha B., Reddy Y.A.K., Jeon H.-J., Ahn C.W. Synthesis of silver nanoparticles in an eco-friendly way using Phyllanthus amarus leaf extract: Antimicrobial and catalytic activity. Adv. Powder Technol. 2018;29(1):86–93. https://doi.org/10.1016/j.apt.2017.10.015

15. Kumar J., Kumar M. Ethnobotanical study of Phyllanthus amarus used in treating diabetes mellitus in Patna district of Bihar, India. Int. J. Instifut. Indust. Resear. 2018;3(1):130–132.

16. Khan F., Sarker M., Rahman M., Ming L.C., Mohamed I.N., Zhao C., et al. Comprehensive review on phytochemicals, pharmacological and clinical potentials of Gymnema sylvestre. Front. Pharmacol. 2019;10:1223. https://doi.org/10.3389/fphar.2019.01223

17. Chen G., Guo M. Rapid screening for α-glucosidase inhibitors from Gymnema sylvestre by affinity ultrafiltration– HPLC-MS. Front. Pharmacol. 2017;8:228. https://doi.org/10.3389/fphar.2017.00228

18. Manimegalai B., Velavan S. Evaluation of anti-obesity activity of Gymnema sylvestre leaves extract. J. Pharmacogn. Phytochem. 2019;8(3):2170–2173. https://www.phytojournal.com/archives/2019/vol8issue3/PartAC/8-2-542-354.pdf

19. Porchezhian E., Dobriyal R.M. An overview on the advances of Gymnema sylvestre: chemistry, pharmacology and patents. Die Pharm. Int. J. Pharm Sci. 2003;58(1):5–12.

20. Arora D.S., Sood H. In vitro antimicrobial potential of extracts and phytoconstituents from Gymnema sylvestre R. Br. leaves and their biosafety evaluation. AMB Express. 2017;7(1):115. https://doi.org/10.1186/s13568-017-0416-z

21. Karthikeyan M., Ahamed A.J., Karthikeyan C., Kumar P.V. Enhancement of antibacterial and anticancer properties of pure and REM doped ZnO nanoparticles synthesized using Gymnema sylvestre leaves extract. SN Appl. Sci. 2019;1(4):355. https://doi.org/10.1007/s42452-019-0375-x

22. Tung P.H.T. Targeted classification, identification and metabolite profiling of triterpenoids in the genus Gymnema and Gynostemma by developing a building block strategy using UHPLC-QTOF/MS. Seoul Nation. Univ. Grad. School; 2019. 174 р. http://dcollection.snu.ac.kr/common/orgView/000000157619

23. Das P.E., Abu-Yousef I.A., Majdalawieh A.F., Narasimhan S., Poltronieri P. Green synthesis of encapsulated copper nanoparticles using a hydroalcoholic extract of Moringa oleifera leaves and assessment of their antioxidant and antimicrobial activities. Molecules. 2020;25(3):555. https://doi.org/10.3390/molecules25030555

24. Uc R., Nair V.M.G. Phytochemical analysis of successive reextracts of the leaves of Moringa oleifera Lam. Int. J. Pharm. Pharm. Sci. 2013;5(S3):629–634.

25. Ghosh N., Ghosal S., Bhattacharyya D.K. Phytochemical Screening and Antioxidative Activity of Oil Extracted from Indian Carp Fish (Labeo Rohita) Skin. Int. Res. J. Eng. Tech. 2019;6(2):1414–1420.

26. Dharmadhas J.S., et al. Preliminary Studies on Phytochemicals and Antimicrobial Activity of Solvent Extracts of Medicinal Plant Lawsonia Inermis. Int. J. Adv. Res. 2019;7(10):887–896. http://dx.doi.org/10.21474/IJAR01/9904

27. Vu Q. Phytochemical Screening from Parts of Tacca Leontopetalodes (L.) Kuntze Collected from AN Giang province, Vietnam. In: The 12th SEATUC symposium. IEEE; 2018.

28. McDonald S., Prenzler P.D., Antolovich M., Robards K. Phenolic content and antioxidant activity of olive extracts. Food Chem. 2001;73(1):73–84. https://doi.org/10.1016/S0308-8146(00)00288-0

29. Liu F., Ma H., Wang G., Liu W., Seeram N.P., Mu Y., et al. Phenolics from Eugenia jambolana seeds with advanced glycation endproduct formation and alpha-glucosidase inhibitory activities. Food Funct. 2018;9(8):4246–4254. https://doi.org/10.1039/C8FO00583D

30. Stagos D. Antioxidant activity of polyphenolic plant extracts. Antioxidants. 2020;9(1):19. https://doi.org/10.3390/antiox9010019

31. Pedersen B.K. Anti‐inflammatory effects of exercise: role in diabetes and cardiovascular disease. Eur. J. Clin. Invest. 2017;47(8):600–611. https://doi.org/10.1111/eci.12781

32. Eshwarappa R.S.B., Ramachandra Y.L., Subaramaihha S.R., Subbaiah S.G.P., Austin R.S., Dhananjaya B.L. AntiLipoxygenase activity of leaf gall extracts of Terminalia chebula (Gaertn.) Retz.(Combretaceae). Pharmacognosy Res. 2016;8(1):78–82. https://doi.org/10.4103/0974-8490.171103

33. Nobossé P., Fombang E.N., Mbofung C.M.F. Effects of age and extraction solvent on phytochemical content and antioxidant activity of fresh Moringa oleifera L. leaves. Food Sci. Nutr. 2018;6(8):2188–2198. https://doi.org/10.1002/fsn3.783

34. Seo J., Lee S., Elam M.L., Johnson S.A., Kang J., Arjmandi B.H. Study to find the best extraction solvent for use with guava leaves (Psidium guajava L.) for high antioxidant efficacy. Food Sci. Nutr. 2014;2(2):174–180. https://doi.org/10.1002/fsn3.91

35. Dah-Nouvlessounon D., Adoukonou-Sagbadja H., Diarrassouba N., Sina H., Adjanohoun A., Inoussa M., et al. Phytochemical Analysis and Biological Activities of Cola nitida Bark. Biochem. Res. Int. 2015;2015:493879. https://doi.org/10.1155/2015/493879

36. Ahmed Q.U., Sarian M.N., Mat So’ad S.Z., Latip J., Arief Ichwan S.J., Hussein N.N., et al. Methylation and acetylation enhanced the antidiabetic activity of some selected flavonoids: in Vitro, molecular modelling and structure activity relationship-based study. Biomolecules. 2018;8(4):149. https://doi.org/10.3390/biom8040149

37. Hassan H.S., Sule M..I, Musa A.M., Musa K.Y., Abubakar M.S., Hassan A.S. Anti-inflammatory activity of crude saponin extracts from five Nigerian medicinal plants. Afric. J. Tradit. Complement. Altern. Med. 2012;9(2):250–255. https://doi.org/10.4314/ajtcam.v9i2.10

38. Prassas I., Diamandis E.P. Novel therapeutic applications of cardiac glycosides. Nat. Rev. Drug Discov. 2008;7(11):926–935. https://doi.org/10.1038/nrd2682

39. Zhang H., Wang G., Dong J. Inhibitory properties of aqueous ethanol extracts of propolis on alpha-glucosidase. Evid.-Based Complement. Altern. Med. 2015;2015:587383. https://doi.org/10.1155/2015/587383

40. Neffati N., Aloui Z., Karoui H., Guizani I., Boussaid M., Zaouali Y. Phytochemical composition and antioxidant activity of medicinal plants collected from the Tunisian flora. Nat. Prod. Res. 2017;31(13):1583–1588. https://doi.org/10.1080/14786419.2017.1280490

41. Williams L.A.D., O’Connar A., Latore L., Dennis O., Ringer S., Whittaker J.A., et al. The in Vitro anti-denaturation effects induced by natural products and non-steroidal compounds in heat treated (immunogenic) bovine serum albumin is proposed as a screening assay for the detection of anti-inflammatory compounds, without the use of animals. West Indian Med. J. 2008;57(4):327–331.


Дополнительные файлы

1. Comparison of the samples’ bioactivities, extraction yields, and TPE
Тема
Тип Исследовательские инструменты
Посмотреть (786KB)    
Метаданные ▾
2. This is to certify that the paper titled Combination of Phyllanthus amarus Schum. & Thonn. and Gymnema sylvestre R. Br. for treatment of diabetes and its long-term complications commissioned to us by Tan M. Le, Chinh D.P. Nguyen, Anh C. Ha has been edited for English language and spelling by Enago, an editing brand of Crimson Interactive Inc.
Тема CERTIFICATE OF EDITING
Тип Прочее
Посмотреть (488KB)    
Метаданные ▾
  • For the first time, Phyllanthus amarus Schum. & Thonn. (PA) and Gymnema sylvestre R. Br. (GS) was combined for treatment of antidiabetes.
  • The combination of PA and GS achieved high bioactivities, such as antidiabetes, antioxidant, and anti-inflammatory.
  • The mixture with the PA/GS ratio of 2 : 1 was the best sample because of its high total polyphenol excreted and antidiabetes and related bioactivities.

Рецензия

Для цитирования:


Ле Т.М., Нгуен Ч.П., Ха А.К. Комбинация Phyllanthus amarus Schum. & Thonn. и Gymnema sylvestre R. Br. для лечения диабета и его долгосрочных осложнений. Тонкие химические технологии. 2021;16(3):232-240. https://doi.org/10.32362/2410-6593-2021-16-3-232-240

For citation:


Le T.M., Nguyen Ch.D., Ha A.C. Combination of Phyllanthus amarus Schum. & Thonn. and Gymnema sylvestre R. Br. for treatment of diabetes and its long-term complications. Fine Chemical Technologies. 2021;16(3):232-240. https://doi.org/10.32362/2410-6593-2021-16-3-232-240

Просмотров: 1273


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 International License.


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)