Fine Chemical Technologies

Advanced search

Structural characterization of hydrogen bonding for antipyrine derivatives: Single-crystal X-ray diffraction and theoretical studies

Full Text:


Objectives. The paper is devoted to the crystal structure characterization of 5-methyl-2-phenyl4H-pyrazol-3-one (compound I) and 2-(4-chlorophenyl)-5-methyl-4H-pyrazol-3-one (compound II).

Methods. Single-crystal X-ray diffraction studies and theoretical calculations: Density functional theory and quantum theory of atoms in molecules.

Results. In the solid state, the crystal structure of compound I is characterized by the alternation of OH and NH tautomers connected via O–H---O and N–H---N hydrogen bonds. For compound II, the existence of chains built from the NH monomers via hydrogen bonding can be explained by the peculiarities of cooperative effects. In the framework of quantum theory of atoms in molecules, the following topological characteristics are calculated for all dimers: electron density, Laplacian of electron density, density of kinetic, potential, and total energy in the critical point of the intermolecular hydrogen bond. It is concluded that the hydrogen bond in dimers 1–4, 7 (compound I), and 8–11 (compound II) can be assigned to the intermediate (between covalent and dispersion types) interaction owing to hydrogen bond formation with the participation of electronegative oxygen- (and/or nitrogen-) atoms, whereas H-bond in dimers 5 and 6 (compound I) can be attributed to the dispersion one (no hydrogen bond formation or weak H-bond formation), and it represents the weak interaction, being in agreement with length for intermolecular hydrogen bond in dimers. The electron density and total energy density values demonstrate that the strongest intermolecular H-bonds take place in dimers 1 (OH---O), 4 (OH---O), 7 (OH---N), 8 (OH---O), 9 (NH---N), and 11 (OH---N). The results obtained for compounds I and II are compared with data for antipyrine (1,2-dihydro-1,5-dimethyl-2-phenyl-3H-pyrazol-3-one; compound III)

Conclusions. An important role of intermolecular hydrogen bonding in the crystal packing, molecule association and self-organization via dimer- or more extended species formation has been demonstrated. 

About the Authors

N. S. Rukk
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Cand. Sci. (Chem.), Associate Professor, A.N. Reformatskii Department of Inorganic Chemistry,

86, Vernadskogo pr., Moscow, 119571

R. S. Shamsiev
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Dr. Sci. (Chem.), Professor, Ya.K. Syrkin Department of Physical Chemistry, 

86, Vernadskogo pr., Moscow, 119571

D. V. Albov
Lomonosov Moscow State University
Russian Federation

Cand. Sci. (Chem.), Senior Scientific Researcher, Faculty of Chemistry, 

1, Leninskie Gory, Moscow, 119992

S. N. Mudretsova
Lomonosov Moscow State University
Russian Federation

Senior Scientific Researcher, Faculty of Chemistry,

1, Leninskie Gory, Moscow, 119992


1. Vijayan M., Viswamitra M.A. A Refinement of the Structure of Calcium Hexa-antipyrine Perchlorate and a Comparative Study of Some Metal Hexaantipyrine Perchlorates. Acta Crystallogr. 1968;B24(8):1067–1076.

2. Brassy C., Mornon J.-P., Delettre J. Dinitratobis(antipyrine) cobalt(II). Acta Crystallogr. 1974;B30(9):2243–2248.

3. Lenarcik B., Wisniewski M., Gabryszewski M. Complexation cаpacity of some biologically active derivatives of 5-pyrazolone. Pol. J. Chem. 1980;54(10):1869–1874.

4. Maroszová J., Findoráková L., Györyvá K., Koman M., Melník M. Bis(2-chlorobenzoato-κO)bis(phenazone-κO)zinc(II) 0.612-hydrate. Acta Crystallogr. 2007;E63(5):m1406–m1407.

5. Madhu N.T., Radhakrishnan P.K., Grunert M., Weinberger P., Linert F. Antipyrine and its derivatives with first row transition metals. Rev. Inorg. Chem. 2003;23(1):1–23.

6. Rukk N.S., Antsyshkina A.S., Sadikov G.G., Sergienko V.S., Skryabina A.Yu., Osipov R.A., Alikberova L.Yu. Synthesis and Structure of Complex Compounds of Lanthanum, Europium and Scandium Iodides with Antipyrine. Russ. J. Inorg. Chem. 2009;54(4):539–542.

7. Rukk N.S., Albov D.V., Shamsiev R.S., Mudretsova S.N., Davydova G.A., Sadikov G.G., Antsyshkina A.S., Kravchenko V.V., Skryabina A.Yu., Apryshko G.N., Zamalyutin V.V., Mironova E.A. Synthesis, X-ray crystal structure and cytotoxicity studies of lanthanide(III) iodide complexes with anipyrine. Polyhedron. 2012;44(1):124–132.

8. Rukk N.S., Kuzmina L.G., Albov D.V., Shamsiev R.S., Mudretsova S.N., Davydova G.A., Retivov V.M., Volkov P.V., Kravchenko V.V., Apryshko G.N., Streletskii A.N., Skryabina A.Yu., Mironova E.A., Zamalyutin V.V. Synthesis, X-ray crystal structure and cytotoxicity studies of zinc(II) and cadmium(II) iodide complexes with anipyrine. Polyhedron. 2015;102:152–162.

9. Li Z.-X., Fei N., Yuan W. Crystal structure of 4-((4-methoxy-benzylidene)-amino)-1,5-dimethyl2-phenylpyrazolidin-3-ol, C19H19N3 O2 . Z. Kristallogr. NCS. 2007;222(2):133–134.

10. Rukk N.S., Skryabina A.Yu., Apryshko G.N. Search for potential antitumor complex compounds of rare earth metals. Russ. J. Biotherapy. 2009;8(2):14–15 (in Russ.).

11. Galantsev A.V., Drobot D.V., Dorovatovsky P.V., Khrustalev V.N. Lanthanum Complex with Neridronic Acid: Synthesis and Properties. Tonk. Khim. Tekhnol. = Fine Chem. Technol. 2019;14(2):70–77 (in Russ.).

12. Kuz’mina L.G, Vedernikov A.I., Howard J.A.K., Bezzubov S.I., Alfimov M.V., Gromov S.P. Peculiarities of styryl dyes of the benzoselenazole series crystal packings and their influence on solid phase [2 + 2] photocycloaddition reaction with single crystal retention. CrystEngComm, 2016;18:7506–7515.

13. Zanatta M., Dupont J., Wentz G.N., dos Santos F.P. Intermolecular hydrogen bonds in water@IL supramolecular complexes. Phys. Chem. Chem. Phys. 2018;20(17):11608–11614.

14. Beijer F.H. Cooperative multiple hydrogen bonding in supramolecular chemistry. Eindhoven: Technische Universiteit Eindhoven; 1998. 188 p.

15. Zhai C., Hou B., Peng P., Zhang P., Li L., Chen X. Hydrogen bonding interaction of ascorbic acid with nicotinamide: Experimental and theoretical study. J. Mol. Liquids. 2018;249:9–15.

16. Laikov D.N. Fast evaluation of density functional exchangecorrelation terms using the expansion of the electron density in auxiliary basis sets. Chem. Phys. Lett.1997;281(1–3):151–156. https://

17. Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77(18):3865–3868.

18. Gaussian 09, Revision A.02. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., Li X., Caricato M., Marenich A., Bloino J., Janesko B.G., Gomperts R., Mennucci D., Hratchian H.P., Ortiz J.V., Izmaylov A.F., Sonnenberg J.L., Williams-Yang D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrewski V.G., Gao J., Rega N., Zheng D., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery J.A. Jr., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Keith T,. Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Millam J.M., Klene M., Adamo C., Cammi R., Ochterski J.W., Martin R.L., Morokuma K., Farkas O., Foresman J.B., Fox D.J., Gaussian, Inc., Wallingford CT, 2016.

19. Lu T., Chen F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012;33(5):580–592.

20. Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. 2015;C71:3–8.

21. Macrae E.C.F., McCabe P., Pidcock E., Shields G.P. Taylor R., Towler M., van de Streek I. Mercury: visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006;39(3):453–457.

22. Dardonville C., Elguero J., Rozas I., FernándezCastaño C., Foces-Foces C., Sobrados I. Tautomerism of 1-(2º,4º-dinitrophenyl)-3-methyl-2-pyrazolin-5-one: theoretical calculations, solid and solution NMR studies and X-ray crystallography. New J. Chem. 1998;22(12):1421–1430.

23. Singh T.P., Vijayan M. Structural Studies of Analgesics and Their Interactions. I. The Crystal and Molecular Structure of Antipyrine. Acta Crystallogr. 1973;B29:714–720.

24. Chugunova G.A., Kataeva O.N., Ahlbrecht H., Kurbangalieva A.R., Movchan A.I., Lenstra A.T.H., Geise H.J., Litvinov I.A. Derivatives of 1-phenyl-3-methylpyrazol2-in-5-thione and their oxygen analogues in the crystalline phase and their tautomeric transformations in solutions and in the gas phase. J. Mol. Struct. 2001;570(1–3):215–223.

25. Wang Q., Zhang Y., Wang R., Yang Y.- L., Zhi F. 5-Methyl-2-phenyl-2H-pyrazol-3-ol. Acta Crystallogr. 2008;E64(10):o1924.

Supplementary files

1. Fig. 3. Asymmetric unit of compound III with the crystallographic numbering scheme: crystal structure packing.
Type Исследовательские инструменты
View (1MB)    
Indexing metadata
2. Appendix A
Subject Appendix A to the article "Structural characterization of hydrogen bonding for antipyrine derivatives: Single-crystal X-ray diffraction and theoretical studies"
Type Data Set
Download (494KB)    
Indexing metadata
3. This is to certify that the paper titled Structural characterization of hydrogen bonding for antipyrine derivatives: Single-crystal X-ray diffraction and theoretical studies commissioned to us by Nataliya S. Rukk, Ravshan S. Shamsiev, Dmitry V. Albov, Svetlana N. Mudretsovai has been edited for English language and spelling by Enago, an editing brand of Crimson Interactive Inc.
Type Other
View (210KB)    
Indexing metadata
  • Structural specific features and packing particularities of antipyrine and its derivatives.
  • Self-organization of molecules in the solid state: single crystal XRD studies and DFT calculations.
  • Hydrogen bonding contribution in the process of dimers formation.

For citation:

Rukk N.S., Shamsiev R.S., Albov D.V., Mudretsova S.N. Structural characterization of hydrogen bonding for antipyrine derivatives: Single-crystal X-ray diffraction and theoretical studies. Fine Chemical Technologies. 2021;16(2):113-137.

Views: 65

ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)