dit	Supp Str ffracti	lemer ucturation an	ntary al cha id the	data to th aracteriza	tion of h tudies. 7	ch arti ydrog <i>onk</i> . J	icle: I gen bo <i>Khim</i>	Rukk N.S., S onding for a <i>Tekhnol</i> . =	Sham intipy <i>Fine</i>	nsiev R vrine d e <i>Chen</i>	S., A eriva 1. Tec	Albov D.V., Mudretsova S.N. tives: Single-crystal X-ray chnol. 2021:16(2):113–124
Ш	$C_{II}H_{12}N_2O$	188.23	Monoclinic, C2/c, 8	a = 16.892(9) b = 7.429(3) c = 17.776(8)	90.00, $116.98(5)$, 90.00; 1987.9(16)	800	1.258	Ag Kα radiation, $\lambda = 0.56087$ Å, Cell parameters from 25 reflections $\theta = 15^{\circ}-16^{\circ}$	0.05	$\begin{array}{c} 0.50 \times 0.50 \times 0.50\\ \text{Colorless prisms} \end{array}$	graphite; non–profiled ∞ scans.	9715 measured reflections, 4882 independent reflections, 2820 reflections with $I > 2\sigma(I)$; $R_{\rm mi} = 0.070$; $\theta_{\rm min} = 28.0^{\circ}$; $\theta_{\rm min} = 2.0^{\circ}$; $h = -28 \rightarrow 28$; $k = -12 \rightarrow 12$; $l = -29 \rightarrow 15$; $l = -29 \rightarrow 15$; I standard reflection every 60 min; intensity decay: 2%
П	$C_{10}H_9CIN_2O$	208.64	Triclinic, P–1, 2	a = 5.8551(12) b = 7.674(3) c = 11.348(3)	106.11(2), 94.669(19), 101.51(2); 475.0(2)	216	1.459	Cu K α radiation, $\lambda = 1.5418 \text{ Å}$, Cell parameters from 25 reflections $\theta = 30^{\circ}-33^{\circ}$	3.28	$0.10 \times 0.10 \times 0.10$ Colorless prisms	ource: fine-focus sealed tube; monochromator:	1952 measured reflections, 1952 independent reflections, 1740 reflections with $I > 2\sigma(I)$; $R_{\text{int}} = 0.0000$; $\theta_{\text{int}} = 74.8^{\circ}$, $\theta_{\text{min}} = 4.1^{\circ}$; $h = -7 \rightarrow 7$; $k = -9 \rightarrow 9$; $l = 0 \rightarrow 14$; $l = 0 \rightarrow 14$; 2 standard reflections every 120 min; intensity decay: 2%
Ι	$C_{10}H_{10}N_2O$	174.20	Monoclinic, P2 ₁ /c, 8	a = 10.331(3) b = 11.155(4) c = 15.880(5)	90.00, 95.06(3), 90.00; 1822.9 (10)	736	1.269	Cu K α radiation, $\lambda = 1.5418$ Å, Cell parameters from 25 reflections $\theta = 33^{\circ}-35^{\circ}$	0.68	0.20 imes 0.20 imes 0.20 Colorless prisms	inraf Nonius CAD4 diffractometer ³ ; radiation s	inic
Compound	Empirical formula	Formula weight	Crystal system, Sp. gr., Z	a, b, c, \AA	$\substack{\alpha,\beta,\gamma,\circ;\\V,\AA^3}$	F(000)	$D_{x^2} \operatorname{Mg·m}^{-3}$	Radiation	μ, mm ⁻¹	Crystal size, mm ³	Data collection: E	3450 measured reflections, 3450 independent reflections, 2988 reflections with $I > 2\sigma(I)$; $R_{int} = 0.0000$; $\theta_{int} = 69.9^{\circ}, \theta_{min} = 4.3^{\circ}$; $h = -12 \rightarrow 12$; $k = 0 \rightarrow 13$; $l = 0 \rightarrow 19$; $l = 0 \rightarrow 19$; l = 19; $l = 10 \rightarrow 19$; $l = 10 \rightarrow 19$; $l = 10 \rightarrow 10$; $l = 10 \rightarrow$

Table A1. Crystal data and the details of data collection and refinement for compounds I, II, and III

Тонкие химические технологии = Fine Chemical Technologies. 2021;16(2):125–137

APPENDIX A

³ Enraf_Nonius CAD_4 Software. Version 5.0. Delft (The Netherlands): Enraf_Nonius, 1989.

Table A1. Continued

	Ref	înement	
H-atom treatment	H atoms were treated by a mixture of independent and constrained refinement	H-atom parameter	s constrained
$R[F^2 > 2\sigma(F^2)]$	0.037	0.057	0.058
$wR(F^2)$	0.102	0.158	0.175
S	1.04	1.06	1.01
Reflections/parameters/ restraints	3450/250/0	1952/128/0	4882/130/0
$\Delta \rho_{max} / \Delta \rho_{min}$, e·Å ⁻³	0.15/-0.11	0.33/-0.22	0.26/-0.30
<i>Note</i> : Z = the number of for $R_{int} = merging error (measur \theta_{min} = max \theta angle in degree:\theta_{min} = \min \theta angle in degreesSp. gr. = space group;\mu = absorption coefficient;\lambda = wavelength, refers to the V = unit cell volume; a, b, and c = cell lengths; a, l D = calculated density;I = intensity of reflection;R = R-factor;R = R-factor;R = weighed R-factor;R = standard deviation;S = goodness of fit;h, k, and l = Miller indices;I > 2\sigma(l) = criterion for stron$	mula units in the unit cell; e of the precision/reproducibility); s for the reflection used for measurement of the un s for the reflection used for measurement of the un s radiation used to measure intensities; β , and $\gamma =$ cell angles; s in the unit cell; s in the unit cell; ag reflections.	nit cell; nit cell;	

Atom	x	У	Z	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.19338 (10)	0.37391 (8)	0.06745 (7)	0.0430 (2)
N2	0.27022 (11)	0.29948 (9)	0.02385 (7)	0.0498 (3)
C3	0.32777 (14)	0.37019 (11)	-0.02844 (9)	0.0518 (3)
C4	0.29077 (14)	0.48962 (11)	-0.01909 (9)	0.0530 (3)
H4	0.3209 (16)	0.5576 (15)	-0.0496 (10)	0.067 (5)*
C5	0.20504 (12)	0.48922 (10)	0.04174 (8)	0.0439 (3)
05	0.13825 (10)	0.57503 (8)	0.07625 (7)	0.0570 (3)
Н5	0.1924 (18)	0.6493 (19)	0.0784 (12)	0.087 (6)*
C6	0.11839 (13)	0.32597 (10)	0.12979 (8)	0.0455 (3)
C7	-0.00259 (14)	0.37340 (13)	0.14200 (9)	0.0555 (3)
H7	-0.0347	0.4389	0.1105	0.067*
C8	-0.07485 (17)	0.32197 (17)	0.20172 (12)	0.0747 (5)
H8	-0.1553	0.3543	0.2110	0.090*
С9	-0.0297 (2)	0.22383 (18)	0.24762 (12)	0.0854 (6)
Н9	-0.0802	0.1886	0.2865	0.102*
C10	0.0912 (2)	0.17804 (15)	0.23559 (11)	0.0802 (6)
H10	0.1224	0.1122	0.2670	0.096*
C11	0.16638 (17)	0.22889 (12)	0.17740 (9)	0.0598 (4)
H11	0.2484	0.1984	0.1702	0.072*
C12	0.41644 (18)	0.31848 (16)	-0.08831 (12)	0.0780 (5)
H12A	0.5048	0.3378	-0.0694	0.117*
H12B	0.3954	0.3514	-0.1437	0.117*
H12C	0.4061	0.2330	-0.0904	0.117*
N21	0.30234 (11)	0.96602 (8)	0.07065 (7)	0.0473 (3)
N22	0.26333 (12)	1.04936 (9)	0.00912 (8)	0.0517 (3)
H22	0.2696 (16)	1.1302 (18)	0.0200 (11)	0.075 (5)*
C23	0.16953 (14)	0.99970 (12)	-0.04340 (9)	0.0546 (3)
C24	0.15371 (15)	0.88297 (12)	-0.02102 (10)	0.0564 (4)
H24	0.0945 (16)	0.8289 (15)	-0.0484 (10)	0.068 (5)*
C25	0.23756 (13)	0.85971 (10)	0.05141 (9)	0.0486 (3)
025	0.26042 (11)	0.76589 (8)	0.09483 (7)	0.0646 (3)
C26	0.41009 (12)	0.98926 (10)	0.12963 (9)	0.0468 (3)
C27	0.42958 (16)	0.92134 (13)	0.20319 (10)	0.0606 (4)

 Table A2. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²) for compound I

Atom	x	у	z	$U_{ m iso}$ */ $U_{ m eq}$
H27	0.3720	0.8601	0.2137	0.073*
C28	0.53456 (18)	0.94523 (17)	0.26046 (11)	0.0752 (5)
H28	0.5485	0.8987	0.3090	0.090*
C29	0.61888 (18)	1.03716 (19)	0.24653 (13)	0.0799 (5)
H29	0.6887	1.0536	0.2859	0.096*
C30	0.59944 (16)	1.10417 (17)	0.17444 (13)	0.0750 (5)
H30	0.6563	1.1665	0.1652	0.090*
C31	0.49607 (14)	1.08054 (13)	0.11487 (11)	0.0595 (4)
H31	0.4847	1.1256	0.0655	0.071*
C32	0.10490 (19)	1.07208 (16)	-0.11336 (11)	0.0751 (5)
H32A	0.0953	1.1532	-0.0947	0.113*
H32B	0.0208	1.0389	-0.1301	0.113*
H32C	0.1568	1.0710	-0.1606	0.113*

Table A2. Continued

Note: The sign * indicates the isotropic displacement parameters, Å².

Table A3. Atomic displacement parameters $(Å^2)$ for compound I

Atom	<i>U</i> ¹¹	U ²²	U ³³	U ¹²	<i>U</i> ¹³	<i>U</i> ²³
N1	0.0534 (6)	0.0206 (4)	0.0566 (6)	-0.0024 (4)	0.0141 (5)	-0.0016 (4)
N2	0.0611 (7)	0.0248 (5)	0.0661 (7)	0.0017 (4)	0.0207 (5)	-0.0021 (4)
C3	0.0578 (7)	0.0343 (6)	0.0656 (8)	-0.0016 (5)	0.0180 (6)	0.0004 (6)
C4	0.0654 (8)	0.0278 (6)	0.0681 (8)	-0.0062 (6)	0.0182 (7)	0.0068 (6)
C5	0.0535 (7)	0.0206 (5)	0.0582 (7)	-0.0031 (5)	0.0080 (6)	-0.0013 (5)
05	0.0680 (6)	0.0238 (4)	0.0819 (7)	-0.0005 (4)	0.0224 (5)	-0.0055 (4)
C6	0.0581 (7)	0.0275 (6)	0.0522 (7)	-0.0118 (5)	0.0124 (6)	-0.0068 (5)
C7	0.0565 (8)	0.0460 (7)	0.0652 (8)	-0.0128 (6)	0.0128 (6)	-0.0136 (6)
C8	0.0718 (10)	0.0743 (11)	0.0825 (11)	-0.0306 (9)	0.0328 (9)	-0.0272 (9)
С9	0.1175 (16)	0.0750 (12)	0.0694 (10)	-0.0501(12)	0.0415 (11)	-0.0159 (9)
C10	0.1320 (17)	0.0452 (9)	0.0659 (10)	-0.0267(10)	0.0222 (10)	0.0051 (7)
C11	0.0854 (10)	0.0328 (6)	0.0628 (8)	-0.0065 (6)	0.0152 (7)	0.0018 (6)
C12	0.0865 (12)	0.0592 (10)	0.0951 (12)	0.0037 (8)	0.0462 (10)	-0.0027 (9)
N21	0.0558 (6)	0.0203 (4)	0.0649 (6)	-0.0015 (4)	-0.0003 (5)	-0.0005 (4)
N22	0.0660 (7)	0.0233 (5)	0.0648 (7)	-0.0013 (5)	-0.0004 (6)	-0.0012 (5)
C23	0.0625 (8)	0.0395 (7)	0.0613 (8)	0.0002 (6)	0.0019 (6)	-0.0059 (6)
C24	0.0623 (8)	0.0363 (7)	0.0699 (9)	-0.0102 (6)	0.0020 (7)	-0.0121 (6)

Tonkie Khimicheskie Tekhnologii = Fine Chemical Technologies. 2021;16(2):125–137

Atom	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C25	0.0540 (7)	0.0220 (5)	0.0707 (8)	-0.0033 (5)	0.0099 (6)	-0.0068 (5)
025	0.0771 (7)	0.0234 (4)	0.0925 (8)	-0.0051 (4)	0.0027 (6)	0.0034 (4)
C26	0.0497 (7)	0.0283 (6)	0.0626 (7)	0.0039 (5)	0.0064 (6)	-0.0092 (5)
C27	0.0675 (9)	0.0459 (8)	0.0683 (9)	0.0036 (7)	0.0058 (7)	0.0002 (7)
C28	0.0793 (11)	0.0766 (11)	0.0676 (10)	0.0117 (9)	-0.0046 (8)	-0.0029 (8)
C29	0.0662 (10)	0.0902 (13)	0.0802 (11)	0.0004 (10)	-0.0099 (9)	-0.0195(10)
C30	0.0607 (9)	0.0674 (10)	0.0966 (13)	-0.0145 (8)	0.0047 (9)	-0.0190(10)
C31	0.0587 (8)	0.0446 (7)	0.0749 (9)	-0.0085 (6)	0.0050 (7)	-0.0059 (7)
C32	0.0907 (12)	0.0627 (10)	0.0691 (10)	0.0040 (9)	-0.0079 (9)	0.0032 (8)

Table A3. Continued

Table A4. Geometric parameters (Å, °) for compound I

Atom-Atom	Bond length, Å	Atom-Atom	Bond length, Å
N1-C5	1.3581 (15)	N21–C25	1.3826 (15)
N1-N2	1.3768 (14)	N21-N22	1.3827 (15)
N1-C6	1.4147 (16)	N21–C26	1.4140 (18)
N2-C3	1.3237 (17)	N22-C23	1.3413 (19)
C3–C4	1.3976 (18)	N22-H22	0.92 (2)
C3–C12	1.493 (2)	C23–C24	1.363 (2)
C4–C5	1.367 (2)	C23–C32	1.484 (2)
С4-Н4	0.966 (17)	C24–C25	1.402 (2)
C5–O5	1.3265 (15)	C24–H24	0.938 (17)
O5–H5	1.00 (2)	C25–O25	1.2640 (16)
C6–C7	1.386 (2)	C26–C31	1.3848 (19)
C6–C11	1.3870 (19)	C26–C27	1.392 (2)
С7–С8	1.382 (2)	C27–C28	1.379 (2)
С7-Н7	0.9300	C27–H27	0.9300
C8–C9	1.374 (3)	C28–C29	1.376 (3)
С8–Н8	0.9300	C28–H28	0.9300
C9–C10	1.378 (3)	C29–C30	1.367 (3)
С9–Н9	0.9300	С29–Н29	0.9300
C10-C11	1.381 (2)	C30–C31	1.388 (2)
С10-Н10	0.9300	С30–Н30	0.9300
С11-Н11	0.9300	C31–H31	0.9300
С12–Н12А	0.9600	C32–H32A	0.9600
C12–H12B	0.9600	С32–Н32В	0.9600
С12–Н12С	0.9600	C32–H32C	0.9600

Table A4. Continued

Angle	Angle value, °	Angle	Angle value, °
C5–N1–N2	110.46 (10)	C25–N21–C26	129.87 (10)
C5–N1–C6	129.57 (10)	N22-N21-C26	120.54 (10)
N2-N1-C6	119.97 (9)	C23–N22–N21	108.14 (11)
C3–N2–N1	105.48 (10)	C23–N22–H22	123.9 (11)
N2-C3-C4	111.05 (12)	N21-N22-H22	121.0 (11)
N2-C3-C12	120.26 (12)	N22-C23-C24	109.21 (13)
C4-C3-C12	128.67 (13)	N22-C23-C32	119.58 (13)
C5–C4–C3	105.80 (11)	C24–C23–C32	131.20 (14)
С5-С4-Н4	127.9 (10)	C23–C24–C25	108.13 (12)
С3-С4-Н4	126.3 (10)	C23–C24–H24	125.5 (10)
O5-C5-N1	119.74 (11)	C25–C24–H24	126.3 (10)
O5–C5–C4	133.05 (11)	O25-C25-N21	121.75 (13)
N1-C5-C4	107.21 (10)	O25–C25–C24	132.31 (12)
С505Н5	107.6 (11)	N21-C25-C24	105.94 (11)
C7–C6–C11	120.33 (13)	C31–C26–C27	119.65 (14)
C7-C6-N1	120.64 (12)	C31-C26-N21	120.13 (13)
C11-C6-N1	119.01 (12)	C27-C26-N21	120.21 (12)
C8–C7–C6	119.05 (16)	C28–C27–C26	119.71 (15)
С8-С7-Н7	120.5	С28-С27-Н27	120.1
С6-С7-Н7	120.5	С26-С27-Н27	120.1
С9–С8–С7	121.06 (17)	C29–C28–C27	120.69 (17)
С9–С8–Н8	119.5	С29–С28–Н28	119.7
С7-С8-Н8	119.5	С27-С28-Н28	119.7
C8–C9–C10	119.44 (15)	C30–C29–C28	119.59 (16)
С8-С9-Н9	120.3	С30–С29–Н29	120.2
С10-С9-Н9	120.3	С28-С29-Н29	120.2
C9–C10–C11	120.72 (18)	C29–C30–C31	120.95 (17)
С9-С10-Н10	119.6	С29-С30-Н30	119.5
С11-С10-Н10	119.6	С31-С30-Н30	119.5
C10-C11-C6	119.37 (16)	C26–C31–C30	119.39 (16)
С10-С11-Н11	120.3	С26-С31-Н31	120.3
С6-С11-Н11	120.3	С30-С31-Н31	120.3
C3–C12–H12A	109.5	С23-С32-Н32А	109.5
C3–C12–H12B	109.5	С23-С32-Н32В	109.5
H12A-C12-H12B	109.5	H32A-C32-H32B	109.5

Table A4. Continued

С3-С12-Н12С	10	9.5	С23-С32-Н32С	109.5	
H12A-C12-H12C	109.5		H32A–C32–H32C	109.5	
H12B-C12-H12C	10	9.5	H32B-C32-H32C	109.5	
C25–N21–N22	108.3	8 (11)	_	_	
Torsion angle	Angle	value, °	Torsion angle	Angle value, °	
C5-N1-N2-C3	-0.20	5 (15)	C25–N21–N22–C23	4.61 (15)	
C6-N1-N2-C3	-179.50 (12)		C26–N21–N22–C23	173.22 (12)	
N1-N2-C3-C4	0.60 (16)		N21-N22-C23-C24	-4.54 (16)	
N1-N2-C3-C12	-178.10 (14)		N21-N22-C23-C32	176.90 (14)	
N2-C3-C4-C5	-0.72	2 (18)	N22-C23-C24-C25	2.76 (17)	
C12–C3–C4–C5	177.8	4 (16)	C32–C23–C24–C25	-178.91 (16)	
N2-N1-C5-O5	179.9	0 (11)	N22-N21-C25-O25	175.97 (13)	
C6-N1-C5-O5	-0.9	9 (2)	C26–N21–C25–O25	8.8 (2)	
N2-N1-C5-C4	-0.18	8 (15)	N22-N21-C25-C24	-2.85 (15)	
C6-N1-C5-C4	178.97 (13)		C26-N21-C25-C24	-170.05 (13)	
C3–C4–C5–O5	-179.57 (15)		C23–C24–C25–O25	-178.53 (16)	
C3-C4-C5-N1	0.52	(16)	C23–C24–C25–N21	0.12 (16)	
C5-N1-C6-C7	35.0	5 (2)	C25–N21–C26–C31	150.33 (14)	
N2-N1-C6-C7	-145.2	28 (12)	N22-N21-C26-C31	-15.54 (18)	
C5-N1-C6-C11	-145.7	78 (14)	C25-N21-C26-C27	-30.3 (2)	
N2-N1-C6-C11	33.30) (17)	N22-N21-C26-C27	163.82 (12)	
С11-С6-С7-С8	-0.5	5 (2)	C31–C26–C27–C28	-0.3 (2)	
N1-C6-C7-C8	178.0	5 (12)	N21-C26-C27-C28	-179.65 (13)	
С6-С7-С8-С9	-1.2	2 (2)	C26–C27–C28–C29	1.3 (2)	
С7-С8-С9-С10	1.8	(3)	C27–C28–C29–C30	-1.1 (3)	
C8–C9–C10–C11	-0.7	7 (3)	C28–C29–C30–C31	-0.3 (3)	
C9–C10–C11–C6	-1.(0 (2)	C27–C26–C31–C30	-1.0 (2)	
C7–C6–C11–C10	1.6	(2)	N21-C26-C31-C30	178.35 (13)	
N1-C6-C11-C10	-176.9	98 (13)	C29–C30–C31–C26	1.3 (3)	
Hydrogen-bond geometry (Å, °))				
D-HA	D–H	HA	DA	D–HA	
О5-Н5О25	1.00 (2)	1.49 (2)	2.4794 (14)	169.8 (18)	
N22-H22N2 ⁱ	0.92 (2)	1.89 (2)	2.8004 (17)	170.5 (16)	
Symmetry code: (i) $x, y + 1, z$.					

Atom	x	У	z	$U_{ m iso}$ */ $U_{ m eq}$
Cl1	0.03028 (10)	0.54630 (7)	0.35235 (4)	0.0752 (3)
N1	-0.0218 (2)	0.11695 (18)	-0.17303 (11)	0.0448 (3)
N2	-0.2362 (2)	0.00890 (18)	-0.23953 (12)	0.0491 (3)
H2	-0.3709	0.0045	-0.2140	0.059*
C3	-0.1961 (3)	-0.0883 (2)	-0.35162 (15)	0.0510 (4)
C4	0.0361 (3)	-0.0560 (2)	-0.35717 (15)	0.0510 (4)
H4	0.1068	-0.1099	-0.4241	0.061*
C5	0.1557 (2)	0.0752 (2)	-0.24282 (14)	0.0487 (4)
05	0.36892 (19)	0.14357 (19)	-0.20424 (12)	0.0616 (4)
C12	-0.3968 (3)	-0.2094 (3)	-0.44703 (18)	0.0706 (5)
H12A	-0.5131	-0.2709	-0.4079	0.106*
H12B	-0.3411	-0.3009	-0.5067	0.106*
H12C	-0.4657	-0.1344	-0.4881	0.106*
C6	-0.0052 (2)	0.21556 (19)	-0.04676 (13)	0.0431 (3)
C7	0.1996 (3)	0.3438 (2)	0.01551 (16)	0.0532 (4)
H7	0.3290	0.3629	-0.0256	0.064*
C8	0.2129 (3)	0.4441 (3)	0.13892 (17)	0.0579 (4)
H8	0.3511	0.5290	0.1816	0.070*
С9	0.0174 (3)	0.4155 (2)	0.19710 (15)	0.0544 (4)
C10	-0.1861 (3)	0.2891 (3)	0.13769 (15)	0.0565 (4)
H10	-0.3152	0.2717	0.1793	0.068*
C11	-0.1989 (3)	0.1865 (2)	0.01432 (14)	0.0520 (4)
H11	-0.3361	0.0990	-0.0270	0.062*

 Table A5. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²) for compound II

Note: The sign * indicates the isotropic displacement parameters, Å².

Table A6. Atomic displacement parameters (Å²) for compound II

Atom	U^{11}	<i>U</i> ²²	<i>U</i> ³³	U^{12}	U^{13}	U ²³
Cl1	0.0948 (5)	0.0763 (4)	0.0413 (3)	0.0189 (3)	0.0047 (3)	-0.0013 (2)
N1	0.0331 (6)	0.0553 (7)	0.0374 (6)	0.0073 (5)	0.0003 (5)	0.0038 (5)
N2	0.0356 (6)	0.0574 (7)	0.0438 (7)	0.0084 (5)	-0.0002 (5)	0.0019 (6)
C3	0.0473 (8)	0.0519 (8)	0.0433 (8)	0.0116 (6)	-0.0036 (6)	0.0002 (6)
C4	0.0460 (8)	0.0585 (8)	0.0416 (8)	0.0166 (6)	0.0047 (6)	0.0015 (6)
C5	0.0395 (7)	0.0617 (8)	0.0426 (8)	0.0147 (6)	0.0049 (6)	0.0104 (7)

Atom	<i>U</i> ¹¹	U ²²	U ³³	U^{12}	U^{13}	U ²³
05	0.0345 (5)	0.0772 (8)	0.0577 (7)	0.0102 (5)	0.0046 (5)	-0.0020 (6)
C12	0.0497 (9)	0.0786 (11)	0.0591 (11)	0.0118 (9)	-0.0054 (8)	-0.0125 (9)
C6	0.0418 (8)	0.0480 (7)	0.0350 (7)	0.0106 (6)	-0.0007 (5)	0.0072 (6)
C7	0.0411 (7)	0.0565 (8)	0.0490 (8)	0.0044 (6)	0.0035 (6)	0.0010 (7)
C8	0.0499 (9)	0.0589 (9)	0.0505 (9)	0.0031 (7)	-0.0035 (7)	0.0028 (7)
С9	0.0633 (10)	0.0550 (8)	0.0410 (8)	0.0165 (7)	-0.0005 (7)	0.0085 (7)
C10	0.0531 (9)	0.0723 (10)	0.0408 (8)	0.0107 (7)	0.0099 (6)	0.0137 (7)
C11	0.0432 (8)	0.0629 (9)	0.0401 (8)	0.0023 (6)	0.0006 (6)	0.0084 (7)

Table A6. Continued

Table A7. Geometric parameters (Å, °) for compound II

Atom-Atom	Bond length, Å	Atom-Atom	Bond length, Å
Cl1–C9	1.7562 (18)	C12–H12B	0.9600
N1–N2	1.3843 (17)	C12–H12C	0.9600
N1-C5	1.3914 (17)	C6–C7	1.382 (2)
N1-C6	1.4077 (18)	C6–C11	1.389 (2)
N2-C3	1.349 (2)	C7–C8	1.385 (2)
N2-H2	0.8600	С7–Н7	0.9300
C3–C4	1.343 (2)	C8–C9	1.377 (2)
C3–C12	1.488 (2)	С8–Н8	0.9300
C4–C5	1.426 (2)	C9–C10	1.364 (3)
С4-Н4	0.9300	C10–C11	1.391 (2)
C5–O5	1.2440 (19)	С10-Н10	0.9300
C12–H12A	0.9600	C11—H11	0.9300
Angle	Angle value, °	Angle	Angle value, °
N2-N1-C5	108.65 (12)	H12B-C12-H12C	109.5
N2-N1-C6	120.36 (12)	C7–C6–C11	120.05 (14)
C5–N1–C6	129.59 (12)	C7-C6-N1	120.55 (13)
C3–N2–N1	107.82 (12)	C11-C6-N1	119.38 (13)
C3–N2–H2	126.1	C6–C7–C8	120.31 (15)
N1-N2-H2	126.1	С6С7Н7	119.8
C4–C3–N2	110.05 (15)	С8–С7–Н7	119.8
C4–C3–C12	129.74 (16)	C9–C8–C7	118.70 (16)
N2-C3-C12	120.20 (15)	С9–С8–Н8	120.6

Appendix A to the article "Structural characterization of hydrogen bonding ..."

Table A7. Continued

C3–C4–C5	108.2	9 (14)	С7–С8–Н8	120.6
С3-С4-Н4	12:	5.9	C10–C9–C8	122.01 (16)
С5-С4-Н4	12	5.9	C10–C9–Cl1	118.99 (14)
O5-C5-N1	123.3	3 (14)	C8–C9–C11	119.01 (14)
O5–C5–C4	131.6	4 (14)	C9–C10–C11	119.41 (15)
N1-C5-C4	105.03 (12)		С9-С10-Н10	120.3
C3–C12–H12A	10	9.5	C11-C10-H10	120.3
C3-C12-H12B	10	9.5	C6-C11-C10	119.51 (15)
H12A-C12-H12B	10	9.5	C6-C11-H11	120.2
С3-С12-Н12С	10	9.5	C10-C11-H11	120.2
H12A-C12-H12C	10	9.5	-	-
Torsion angle	Angle	value, °	Torsion angle	Angle value, °
C5–N1–N2–C3	-4.19	9 (17)	C5-N1-C6-C7	24.4 (2)
C6-N1-N2-C3	-171.9	92 (12)	N2-N1-C6-C11	7.6 (2)
N1-N2-C3-C4	3.76	(19)	C5-N1-C6-C11	-157.28 (15)
N1-N2-C3-C12	-176.4	41 (16)	C11-C6-C7-C8	0.0 (3)
N2-C3-C4-C5	-1.88	8 (19)	N1-C6-C7-C8	178.29 (13)
C12-C3-C4-C5	178.3	1 (19)	C6–C7–C8–C9	-1.1 (3)
N2-N1-C5-O5	-176.1	12 (15)	C7–C8–C9–C10	1.4 (3)
C6-N1-C5-O5	-9.9	9 (3)	C7–C8–C9–Cl1	-178.39 (12)
N2-N1-C5-C4	2.98	(16)	C8-C9-C10-C11	-0.6 (3)
C6-N1-C5-C4	169.2	2 (14)	C11-C9-C10-C11	179.25 (12)
C3-C4-C5-O5	178.2	8 (18)	C7–C6–C11–C10	0.9 (2)
C3-C4-C5-N1	-0.72	2 (17)	N1-C6-C11-C10	-177.44 (14)
N2-N1-C6-C7	-170.7	78 (13)	C9-C10-C11-C6	-0.6 (3)
Hydrogen-bond geometry (Å, °)			
D–HA	D–H	HA	DA	D-HA
N2–H2O5 ⁱ	0.86	2.02	2.7293 (18)	139
Symmetry code: (i) x -1, y , z .				

 Table A8. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²) for compound III

Atom	x	У	Z	$oldsymbol{U}_{ ext{iso}}^{*} / oldsymbol{U}_{ ext{eq}}$
N1	0.48507 (6)	0.37211 (12)	0.10131 (6)	0.0388 (2)
N2	0.47599 (6)	0.54096 (11)	0.13277 (6)	0.0393 (2)

Tonkie Khimicheskie Tekhnologii = Fine Chemical Technologies. 2021;16(2):125–137

Atom	x	у	z	$U_{ m iso}^{*}/U_{ m eq}$
C3	0.38667 (7)	0.58089 (15)	0.09304 (7)	0.0399 (2)
C4	0.33980 (7)	0.43974 (16)	0.04683 (7)	0.0432 (3)
H4	0.2783	0.4342	0.0164	0.052*
04	0.38798 (6)	0.14436 (13)	0.02542 (6)	0.0562 (3)
C5	0.40039 (7)	0.29940 (16)	0.05233 (7)	0.0397 (2)
C6	0.56111 (6)	0.26616 (14)	0.15091 (7)	0.0357 (2)
C7	0.59414 (8)	0.14975 (16)	0.11065 (8)	0.0445 (3)
H7	0.5680	0.1449	0.0520	0.053*
C8	0.66604 (8)	0.04131 (17)	0.15833 (9)	0.0490 (3)
H8	0.6882	-0.0366	0.1315	0.059*
С9	0.70529 (8)	0.04735 (17)	0.24529 (8)	0.0475 (3)
Н9	0.7532	-0.0271	0.2769	0.057*
C10	0.67305 (8)	0.16467 (17)	0.28522 (8)	0.0451 (3)
H10	0.6998	0.1699	0.3439	0.054*
C11	0.60106 (7)	0.27459 (16)	0.23843 (7)	0.0403 (2)
H11	0.5796	0.3536	0.2655	0.048*
C12	0.35505 (11)	0.75872 (19)	0.10678 (10)	0.0607 (4)
H12A	0.3672	0.8489	0.0747	0.091*
H12B	0.3853	0.7889	0.1657	0.091*
H12C	0.2923	0.7533	0.0888	0.091*
C13	0.54237 (9)	0.67445 (18)	0.14061 (10)	0.0563 (3)
H13A	0.5435	0.6874	0.0874	0.085*
H13B	0.5997	0.6361	0.1827	0.085*
H13C	0.5277	0.7879	0.1569	0.085*

Table A8. Continued

Note: The sign * indicates the isotropic displacement parameters, Å².

Table A9. Atomic displacement parameters $(Å^2)$ for compound III

Atom	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
N1	0.0333 (4)	0.0354 (4)	0.0417 (4)	-0.0002 (3)	0.0118 (3)	-0.0046 (3)
N2	0.0368 (4)	0.0299 (4)	0.0447 (5)	-0.0007 (3)	0.0129 (4)	-0.0017 (3)
C3	0.0398 (5)	0.0369 (5)	0.0389 (5)	0.0063 (4)	0.0142 (4)	0.0074 (4)
C4	0.0340 (5)	0.0439 (6)	0.0433 (5)	0.0023 (4)	0.0102 (4)	0.0036 (4)
04	0.0471 (5)	0.0474 (5)	0.0614 (5)	-0.0062 (4)	0.0135 (4)	-0.0189 (4)
C5	0.0352 (5)	0.0420 (5)	0.0360 (5)	-0.0028 (4)	0.0109 (4)	-0.0027 (4)

Appendix A to the article "Structural characterization of hydrogen bonding ..."

Atom	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C6	0.0303 (4)	0.0341 (4)	0.0421 (5)	-0.0017 (3)	0.0159 (4)	-0.0018 (4)
С7	0.0435 (6)	0.0450 (6)	0.0456 (6)	0.0011 (5)	0.0209 (5)	-0.0071 (5)
C8	0.0429 (6)	0.0436 (6)	0.0635 (7)	0.0030 (5)	0.0268 (5)	-0.0089 (5)
С9	0.0347 (5)	0.0413 (6)	0.0628 (7)	0.0033 (4)	0.0190 (5)	0.0029 (5)
C10	0.0384 (5)	0.0489 (6)	0.0437 (5)	0.0019 (5)	0.0148 (4)	0.0031 (5)
C11	0.0364 (5)	0.0442 (5)	0.0415 (5)	0.0019 (4)	0.0186 (4)	-0.0027 (4)
C12	0.0625 (8)	0.0443 (7)	0.0662 (8)	0.0174 (6)	0.0212 (7)	0.0044 (6)
C13	0.0495 (7)	0.0408 (6)	0.0707 (8)	-0.0107 (5)	0.0202 (6)	0.0001 (6)

Table A9. Continued

Table A10. Geometric parameters (Å, °) for compound III

Atom-Atom	Bond length, Å	Atom-Atom	Bond length, Å
N1-C5	1.4021 (16)	C8–C9	1.379 (2)
N1–N2	1.4098 (13)	C8–H8	0.9300
N1-C6	1.4210 (16)	C9–C10	1.3823 (18)
N2-C3	1.3770 (17)	С9–Н9	0.9300
N2-C13	1.4554 (16)	C10–C11	1.3854 (18)
C3–C4	1.3457 (17)	C10–H10	0.9300
C3–C12	1.4860 (18)	C11–H11	0.9300
C4–C5	1.4329 (17)	C12–H12A	0.9600
C4–H4	0.9300	C12–H12B	0.9600
O4–C5	1.2281 (15)	C12–H12C	0.9600
C6–C11	1.3883 (17)	С13–Н13А	0.9600
C6–C7	1.3904 (15)	C13–H13B	0.9600
C6–C7	1.3904 (15)	С13-Н13В	0.9600
С7–Н7	0.9300	_	_
Angle	Angle value, °	Angle	Angle value, °
C5–N1–N2	108.98 (9)	С7–С8–Н8	119.6
C5–N1–C6	123.53 (10)	C8–C9–C10	119.68 (11)
N2-N1-C6	118.50 (9)	С8–С9–Н9	120.2
C3–N2–N1	106.22 (9)	С10-С9-Н9	120.2
C3–N2–C13	121.31 (10)	C9-C10-C11	120.42 (12)
N1-N2-C13	115.25 (10)	С9-С10-Н10	119.8
C4–C3–N2	110.46 (11)	С11-С10-Н10	119.8

Table A10. Continued

C4–C3–C12	129.58 (12)	C10-C11-C6	119.61 (11)
N2-C3-C12	119.94 (11)	С10-С11-Н11	120.2
C3–C4–C5	108.73 (11)	C6-C11-H11	120.2
С3-С4-Н4	125.6	C3–C12–H12A	109.5
С5-С4-Н4	125.6	C3-C12-H12B	109.5
04-C5-N1	123.29 (11)	H12A-C12-H12B	109.5
04–C5–C4	131.71 (11)	C3-C12-H12C	109.5
N1-C5-C4	104.94 (10)	H12A-C12-H12C	109.5
С11-С6-С7	120.02 (10)	H12B-C12-H12C	109.5
C11-C6-N1	120.88 (10)	N2-C13-H13A	109.5
C7-C6-N1	119.08 (10)	N2-C13-H13B	109.5
С8–С7–С6	119.56 (12)	H13A-C13-H13B	109.5
С8–С7–Н7	120.2	N2-C13-H13C	109.5
С6-С7-Н7	120.2	H13A-C13-H13C	109.5
С9–С8–С7	120.70 (11)	Н13В-С13-Н13С	109.5
С9-С8-Н8	119.6	_	_
C9–C8–H8 Torsion angle	119.6 Angle value, °	- Torsion angle	Angle value, °
C9–C8–H8 Torsion angle C5–N1–N2–C3	119.6 Angle value, ° -8.50 (11)	Torsion angle C3-C4-C5-O4	- Angle value, ° 174.74 (13)
C9–C8–H8 Torsion angle C5–N1–N2–C3 C6–N1–N2–C3	119.6 Angle value, ° -8.50 (11) -156.86 (9)	- Torsion angle C3-C4-C5-O4 C3-C4-C5-N1	Angle value, ° 174.74 (13) -2.69 (13)
C9–C8–H8 Torsion angle C5–N1–N2–C3 C6–N1–N2–C3 C5–N1–N2–C13	119.6 Angle value, ° -8.50 (11) -156.86 (9) -145.85 (11)	- Torsion angle C3-C4-C5-O4 C3-C4-C5-N1 C5-N1-C6-C11	Angle value, ° 174.74 (13) -2.69 (13) -112.19 (12)
C9–C8–H8 Torsion angle C5–N1–N2–C3 C6–N1–N2–C3 C5–N1–N2–C13 C6–N1–N2–C13	119.6 Angle value, ° -8.50 (11) -156.86 (9) -145.85 (11) 65.80 (14)	- Torsion angle C3-C4-C5-O4 C3-C4-C5-N1 C5-N1-C6-C11 N2-N1-C6-C11	Angle value, ° 174.74 (13) -2.69 (13) -112.19 (12) 31.29 (14)
C9–C8–H8 Torsion angle C5–N1–N2–C3 C6–N1–N2–C3 C5–N1–N2–C13 C6–N1–N2–C13 N1–N2–C3–C4	119.6 Angle value, ° -8.50 (11) -156.86 (9) -145.85 (11) 65.80 (14) 6.83 (12)	- Torsion angle C3-C4-C5-O4 C3-C4-C5-N1 C5-N1-C6-C11 N2-N1-C6-C11 C5-N1-C6-C7	Angle value, ° 174.74 (13) -2.69 (13) -112.19 (12) 31.29 (14) 66.27 (14)
C9–C8–H8 Torsion angle C5–N1–N2–C3 C6–N1–N2–C3 C5–N1–N2–C13 C6–N1–N2–C13 N1–N2–C3–C4 C13–N2–C3–C4	119.6 Angle value, ° -8.50 (11) -156.86 (9) -145.85 (11) 65.80 (14) 6.83 (12) 141.00 (12)	- Torsion angle C3-C4-C5-O4 C3-C4-C5-N1 C5-N1-C6-C11 N2-N1-C6-C11 C5-N1-C6-C7 N2-N1-C6-C7	Angle value, ° 174.74 (13) -2.69 (13) -112.19 (12) 31.29 (14) 66.27 (14) -150.25 (10)
C9–C8–H8 Torsion angle C5–N1–N2–C3 C6–N1–N2–C3 C5–N1–N2–C13 C6–N1–N2–C13 C6–N1–N2–C13 N1–N2–C3–C4 C13–N2–C3–C4 N1–N2–C3–C4 N1–N2–C3–C4 N1–N2–C3–C12 C12	119.6 Angle value, ° -8.50 (11) -156.86 (9) -145.85 (11) 65.80 (14) 6.83 (12) 141.00 (12) -174.78 (10)	- Torsion angle C3-C4-C5-O4 C3-C4-C5-N1 C5-N1-C6-C11 N2-N1-C6-C11 C5-N1-C6-C7 N2-N1-C6-C7 C11-C6-C7-C8	Angle value, ° 174.74 (13) -2.69 (13) -112.19 (12) 31.29 (14) 66.27 (14) -150.25 (10) 0.83 (17)
C9–C8–H8 Torsion angle C5–N1–N2–C3 C6–N1–N2–C3 C5–N1–N2–C13 C6–N1–N2–C13 N1–N2–C3–C4 C13–N2–C3–C4 N1–N2–C3–C4 C13–N2–C3–C12 C13–N2–C3–C12	119.6 Angle value, ° -8.50 (11) -156.86 (9) -145.85 (11) 65.80 (14) 6.83 (12) 141.00 (12) -174.78 (10) -40.61 (17)	- Torsion angle C3-C4-C5-O4 C3-C4-C5-N1 C5-N1-C6-C11 N2-N1-C6-C11 C5-N1-C6-C7 N2-N1-C6-C7 C11-C6-C7-C8 N1-C6-C7-C8	
C9–C8–H8 Torsion angle C5–N1–N2–C3 C6–N1–N2–C3 C5–N1–N2–C13 C6–N1–N2–C13 N1–N2–C3–C4 C13–N2–C3–C4 N1–N2–C3–C4 C13–N2–C3–C4 N1–N2–C3–C12 C13–N2–C3–C12 N1–N2–C3–C12 N2–C3–C4–C5	119.6 Angle value, ° -8.50 (11) -156.86 (9) -145.85 (11) 65.80 (14) 6.83 (12) 141.00 (12) -174.78 (10) -40.61 (17) -2.62 (13)	- Torsion angle C3-C4-C5-O4 C3-C4-C5-N1 C5-N1-C6-C11 N2-N1-C6-C11 C5-N1-C6-C7 N2-N1-C6-C7 C11-C6-C7-C8 N1-C6-C7-C8 C6-C7-C8-C9	
C9–C8–H8 Torsion angle C5–N1–N2–C3 C6–N1–N2–C3 C5–N1–N2–C13 C6–N1–N2–C13 C6–N1–N2–C13 N1–N2–C3–C4 C13–N2–C3–C4 N1–N2–C3–C4 C13–N2–C3–C4 N1–N2–C3–C12 C13–N2–C3–C12 C13–N2–C3–C12 C12–C3–C4–C5 C12–C3–C4–C5	119.6 Angle value, ° -8.50 (11) -156.86 (9) -145.85 (11) 65.80 (14) 6.83 (12) 141.00 (12) -174.78 (10) -2.62 (13) 179.20 (12)	Torsion angle C3-C4-C5-O4 C3-C4-C5-N1 C5-N1-C6-C11 N2-N1-C6-C11 C5-N1-C6-C7 N2-N1-C6-C7 N1-C6-C7-C8 N1-C6-C7-C8 C6-C7-C8-C9 C7-C8-C9-C10	
C9–C8–H8 Torsion angle C5–N1–N2–C3 C6–N1–N2–C3 C5–N1–N2–C13 C6–N1–N2–C13 C6–N1–N2–C13 N1–N2–C3–C4 C13–N2–C3–C4 N1–N2–C3–C4 C13–N2–C3–C4 N1–N2–C3–C12 C13–N2–C3–C12 C13–N2–C3–C12 N2–C3–C4–C5 C12–C3–C4–C5 N2–N1–C5–O4	119.6 Angle value, ° -8.50 (11) -156.86 (9) -145.85 (11) 65.80 (14) 6.83 (12) 141.00 (12) -174.78 (10) -2.62 (13) 179.20 (12) -170.83 (11)	Torsion angle C3-C4-C5-O4 C3-C4-C5-N1 C5-N1-C6-C11 N2-N1-C6-C11 C5-N1-C6-C7 N2-N1-C6-C7 C11-C6-C7-C8 N1-C6-C7-C8 C6-C7-C8-C9 C7-C8-C9-C10 C8-C9-C10-C11	Angle value, ° 174.74 (13) -2.69 (13) -112.19 (12) 31.29 (14) 66.27 (14) -150.25 (10) 0.83 (17) -177.64 (11) 0.02 (18) -0.78 (19) 0.70 (18)
C9–C8–H8 Torsion angle C5–N1–N2–C3 C6–N1–N2–C3 C5–N1–N2–C13 C6–N1–N2–C13 C6–N1–N2–C13 N1–N2–C3–C4 C13–N2–C3–C4 C13–N2–C3–C4 C13–N2–C3–C4 C13–N2–C3–C4–C5 C12–C3–C4–C5 N2–N1–C5–O4 C6–N1–C5–O4	119.6 Angle value, ° -8.50 (11) -156.86 (9) -145.85 (11) 65.80 (14) 6.83 (12) 141.00 (12) -174.78 (10) -40.61 (17) -2.62 (13) 179.20 (12) -170.83 (11) -24.42 (17)	Torsion angle C3-C4-C5-O4 C3-C4-C5-N1 C5-N1-C6-C11 N2-N1-C6-C11 C5-N1-C6-C7 N2-N1-C6-C7 C11-C6-C7-C8 N1-C6-C7-C8 C6-C7-C8-C9 C7-C8-C9-C10 C8-C9-C10-C11 C9-C10-C11-C6	- Angle value, ° 174.74 (13) -2.69 (13) -112.19 (12) 31.29 (14) 66.27 (14) -150.25 (10) 0.83 (17) -177.64 (11) 0.02 (18) -0.78 (19) 0.70 (18) 0.15 (18)
C9–C8–H8 Torsion angle C5–N1–N2–C3 C6–N1–N2–C3 C5–N1–N2–C13 C6–N1–N2–C13 C6–N1–N2–C13 N1–N2–C3–C4 C13–N2–C3–C4 N1–N2–C3–C4 C13–N2–C3–C4 N1–N2–C3–C4 C13–N2–C3–C4 N1–N2–C3–C4 C13–N2–C3–C4 N1–N2–C3–C4 C13–N2–C3–C4 N1–N2–C3–C4 C13–N2–C3–C4 N1–N2–C3–C4 C12–C3–C4–C5 N2–N1–C5–O4 C6–N1–C5–O4 N2–N1–C5–C4	119.6 Angle value, ° -8.50 (11) -156.86 (9) -145.85 (11) 65.80 (14) 6.83 (12) 141.00 (12) -174.78 (10) -262 (13) 179.20 (12) -170.83 (11) -24.42 (17) 6.87 (11)	Torsion angle C3-C4-C5-O4 C3-C4-C5-N1 C5-N1-C6-C11 N2-N1-C6-C11 C5-N1-C6-C7 N2-N1-C6-C7 C11-C6-C7-C8 C6-C7-C8 C6-C7-C8-C9 C7-C8-C9-C10 C8-C9-C10-C11 C9-C10-C11-C6 C7-C6-C11-C10	- Angle value, ° $174.74 (13)$ $-2.69 (13)$ $-112.19 (12)$ $31.29 (14)$ $66.27 (14)$ $-150.25 (10)$ $0.83 (17)$ $-177.64 (11)$ $0.02 (18)$ $-0.78 (19)$ $0.70 (18)$ $0.15 (18)$ $-0.91 (17)$