Preview

Fine Chemical Technologies

Advanced search

Optimization of total flavonoid content of ethanolic extract of Persicaria pulchra (Bl.) Soják for the inhibition of α-glucosidase enzyme

https://doi.org/10.32362/2410-6593-2020-15-4-39-50

Full Text:

Abstract

Objectives. There has been a rapid increase in the number of diabetic patients since the past few decades in developed and developing countries. This rapid increase is accompanied by alarming costs of treatment. α-Glucosidase inhibitors are one of the most effective drugs employed for the reduction of postprandial hyperglycemia to manage Type 2 diabetes mellitus. Additionally, flavonoids, a group of natural substances, which are widely distributed in plants and possess variable phenolic structures, exhibit outstanding hypoglycemic activity and are considered as potential α-glucosidase inhibitors. In Vietnam, Persicaria pulchra (Bl.) Soják (P. pulchra) is employed in traditional medications. It possesses high flavonoid contents and its anti-diabetes ability has been hypothesized, although it has attracted less attention for investigation. Hence, the aim of this study is to optimize the condition of the P. pulchra extract to obtain the highest total flavonoid content and measure the bioactivities of P. pulchra, such as the anti-α-glucosidase and antioxidant activities.

Methods. The effects of the extracting conditions, including the temperature, extraction time, liquid-to-solid ratio (LSR), and ethanol (C2H5OH) concentration, on the total flavonoid content are investigated via experiments and analyzed by the response surface methodology (RSM). Concurrently, the optimal extraction also determines the anti-α-glucosidase and antioxidant activities.

Results. The optimal extraction condition for the highest flavonoid content (530 mg quercetin/g) is determined in 60 min, at 53°C, with LSR of 9.46 g/g and C2H5OH concentration of 62%. Moreover, the optimal plant extract exhibits good α-glucosidase inhibition with a half-maximal inhibitory concentration (IC50) of 22.67 mg/mL, compared to the positive control (acarbose −7.77 g/mL). Additionally, P. pulchra is proposed to be a potential antioxidant with an IC50 of ~12.68 µg/mL.

Conclusions. The study confirmed the optimal extraction condition of P. pulchra that will obtain the highest total flavonoid content and revealed the potentials of P. pulchra in α-glucosidase inhibition and antioxidation.

About the Authors

N. H.N. Do
Ho Chi Minh City University of Technology; Vietnam National University
Viet Nam

Nga H.N. Do, BEng., Postgraduate Student

268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam



T. M. Le
Ho Chi Minh City University of Technology; Vietnam National University
Viet Nam

Tan M. Le, BEng., Postgraduate Student

268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam



C. D.P. Nguyen
Ho Chi Minh City University of Technology; Vietnam National University
Viet Nam

Chinh D.P. Nguyen, BEng., Postgraduate Student

268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam



A. C. Ha
Ho Chi Minh City University of Technology; Vietnam National University
Viet Nam

Anh C. Ha, PhD, Dr

268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam

 



References

1. Zimmet P. Globalization, coca-colonization and the chronic disease epidemic: can the Doomsday scenario be averted? J. Intern. Med. 2000;247(3):301-310. https://doi.org/10.1046/j.1365-2796.2000.00625.x

2. Cho N.H., Shaw J.E., Karuranga S., Huang Y., da Rocha Fernandes J.D., Ohlrogge A.W., Malanda B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018;138:271-281. https://doi.org/10.1016/j.diabres.2018.02.023

3. Shaw J.E., Sicree R.A., Zimmet P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010;87(1):4-14. https://doi.org/10.1016/j.diabres.2009.10.007

4. Chinsembu K.C. Diabetes mellitus and nature’s pharmacy of putative antidiabetic plants. J. Herb. Med. 2019;15:100230. https://doi.org/10.1016/j.hermed.2018.09.001

5. Wucherpfennig K.W., Eisenbarth G.S. Type 1 diabetes. Nat. Immunol. 2001;2:767-768. https://doi.org/10.1038/ni0901-767

6. Lascar N., Brown J., Pattison H., Barnett A.H., Bailey C.J., Bellary S. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2018;6(1):69-80. https://doi.org/10.1016/s2213-8587(17)30186-9

7. Baena-Díez J.M., Peñafiel J., Subirana I., Ramos R., Elosua R., Marín-Ibañez A., et al. Risk of Cause-Specific Death in Individuals with Diabetes: A Competing Risks Analysis. Diabetes Care. 2016;39(11):1987-1995. https://doi.org/10.2337/dc16-0614

8. Davies M.J., D'Alessio D.A., Fradkin J., Kernan W.N., Mathieu C., Mingrone G., et al. Management of hyperglycaemia in type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia. 2018;61:2461-2498. https://doi.org/10.1007/s00125-019-4845-x

9. Zhang L., Chen Q., Li L., Kwong J.S., Jia P., Zhao P., et al. Alpha-glucosidase inhibitors and hepatotoxicity in type 2 diabetes: a systematic review and meta-analysis. Sci. Rep. 2016;6:32649. https://doi.org/10.1038/srep32649

10. Rendell M. The role of sulphonylureas in the management of type 2 diabetes mellitus. Drugs. 2004;64(12):1339-1358. https://doi.org/10.2165/00003495-200464120-00006

11. Hotta N. A new perspective on the biguanide, metformin therapy in type 2 diabetes and lactic acidosis. J. Diabetes Investig. 2019;10(4):906-908. https://doi.org/10.1111/jdi.13090

12. Rizos C.V., Kei A., Elisaf M.S. The current role of thiazolidinediones in diabetes management. Arch. Toxicol. 2016;90(8):1861-18.81. https://doi.org/10.1007/s00204-016-1737-4

13. Tahrani A.A., Bailey C.J., Del Prato S., Barnett A.H. Management of type 2 diabetes: new and future developments in treatment. Lancet. 2011;378(9786):182-197. https://doi.org/10.1016/s0140-6736(11)60207-9

14. Choudhury H., Pandey M., Hua C.K., Mun C.S., Jing J.K., Kong L., et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J. Tradit. Complement Med. 2018;8(3):361-376. https://doi.org/10.1016/j.jtcme.2017.08.012

15. Testa R., Bonfigli A.R., Genovese S., De Nigris V.D., Ceriello A. The possible role of flavonoids in the prevention of diabetic complications. Nutrients. 2016;8(5):310. https://doi.org/10.3390/nu8050310.

16. Al-Ishaq R.K., Abotaleb M., Kubatka P., Kajo K., Büsselberg D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules. 2019;9(9):430. https://doi.org/10.3390/biom9090430

17. Proença C., Freitas M., Ribeiro D., Oliveira E.F.T., Sousa J.L.C., Tomé S.M., et al. α-Glucosidase inhibition by flavonoids: an in vitro and in silico structure– activity relationship study. J. Enzyme Inhib. Med. Chem. 2017;32(1):1216-1228. https://doi.org/10.1080/14756366.2017.1368503

18. Vinayagam R., Xu B. Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr. Metab (Lond). 2015;12:60. https://doi.org/10.1186/s12986-015-0057-7

19. Zia-ur-rehman M., Mirajab K., Mushtaq A. Potential for Pakistani traditional medicinal plants to combat diabetes. J. Tradit. Chin. Med. 2014;34(4):488-490. https://doi.org/10.1016/s0254-6272(15)30051-0

20. Oany A.R., Siddikey A.A., Hossain M.U., Islam R., Emran A.A. A preliminary evaluation of cytotoxicity, antihyperglycemic and antinociceptive activity of Polygonum hydropiper L. ethanolic leaf extract. Clin. Phytoscience. 2017;2:2. https://doi.org/10.1186/s40816-016-0016-5

21. Fan D., Zhou X., Zhao C., Chen H., Zhao Y., Gong X. Anti-inflammatory, antiviral and quantitative study of quercetin-3-O-β-D-glucuronide in Polygonum perfoliatum L. Fitoterapia. 2011;82(6):805-810. https://doi.org/10.1016/j.fitote.2011.04.007

22. Akter A. and Hasan M. Evaluation of the methanolic extract of leaves of persicaria capitata for pharmacological activity. Pharmacologyonline. 2018;2:14-49. https://www.researchgate.net/publication/327230818_ Evaluation_of_the_methanolic_extract_of_leaves_of_ persicaria_capitata_for_pharmacological_activity

23. Box G.E.P., Wilson K.B. On the experimental attainment of optimum conditions. In: Kotz S., Johnson N.L. (Eds.). Breakthroughs in Statistics New York: Springer; 1992. Chapter 10. P. 270-310. https://doi.org/10.1007/978-1-4612-4380-9_23

24. Sánchez-Rangel J.C., Benavides J., Heredia J.B., Cisneros-Zevallosc L., Jacobo-Velázquez D.A. The Folin– Ciocalteu assay revisited: improvement of its specificity for total phenolic content determination. Analytical Methods. 2013;5(21):5990-5999. https://doi.org/10.1039/C3AY41125G

25. Baba S.A., Malik S.A. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. Journal of Taibah University for Science. 2015;9(4):449-454. https://doi.org/10.1016/j.jtusci.2014.11.001

26. Mahomoodally M.F., Muthoora D.D. Kinetic of inhibition of carbohydrate-hydrolysing enzymes, antioxidant activity and polyphenolic content of Phyllanthus amarus Schum. & Thonn. (Phyllanthaceae). J. Herb. Med. 2014;4(4):208-223. https://doi.org/10.1016/J.HERMED.2014.09.003

27. Sharma O.P., Bhat T.K. DPPH antioxidant assay revisited. Food Chem. 2009;113(4):1202-1205. https://doi.org/10.1016/j.foodchem.2008.08.008

28. Chansiw N., Chotinantakul K., Srichairatanakool S. Anti-inflammatory and antioxidant activities of the extracts from leaves and stems of Polygonum odoratum Lour. Antiinflamm Antiallergy Agents Med. Chem. 2019;18(1):45-54. https://doi.org/10.2174/1871523017666181109144548

29. Abdullah M.Z., Ali J.M., Abolmaesoomi M., Abdul-Rahman P.S., Hashim O.H. Anti-proliferative, in vitro antioxidant, and cellular antioxidant activities of the leaf extracts from Polygonum minus Huds: Effects of solvent polarity. Int. J. Food Prop. 2017;20(S1):S846-S861. https://doi.org/10.1080/10942912.2017.1315591

30. Trinh B.T.D., Staerk D., Jäger A.K. Screening for potential α-glucosidase and α-amylase inhibitory constituents from selected Vietnamese plants used to treat type 2 diabetes. J. Ethnopharmacol. 2016;186:189-195. https://doi.org/10.1016/j.jep.2016.03.060

31. Li K., Yao F., Xue Q., Fan H., Yang L., Li X., et al. Inhibitory effects against α-glucosidase and α-amylase of the flavonoids-rich extract from Scutellaria baicalensis shoots and interpretation of structure–activity relationship of its eight flavonoids by a refined assignscore method. Chem Cent. J. 2018;12:82. https://doi.org/10.1186/s13065-018-0445-y

32. Zhang Q.W., Lin L.G., Ye W.C. Techniques for extraction and isolation of natural products: a comprehensive review. Chin. Med. 2018;13:20. https://doi.org/10.1186/s13020-018-0177-x

33. Sheng Z.L., Wan P.F., Dong C.L., Li Y.H. Optimization of total flavonoids content extracted from Flos Populi using response surface methodology. Ind. Crops Prod. 2012;43:778-786. https://doi.org/10.1016/j.indcrop.2012.08.020

34. Biesaga M. Influence of extraction methods on stability of flavonoids. J. Chromatogr. A. 2011;1218(18):2505-2512. https://doi.org/10.1016/j.chroma.2011.02.059

35. Pereira D.F., Cazarolli L.H., Lavado C., Mengatto V., Figueiredo M.S., Guedes A., Pizzolatti M.G., et al. Effects of flavonoids on α-glucosidase activity: potential targets for glucose homeostasis. Nutrition. 2011;27(11-12):1161-1167. https://doi.org/10.1016/j.nut.2011.01.008

36. Şöhretoğlu D., Sari S., Barut B., Özel A. Discovery of potent α-glucosidase inhibitor flavonols: Insights into mechanism of action through inhibition kinetics and docking simulations. Bioorg. Chem. 2018;79:257-264. https://doi.org/10.1016/j.bioorg.2018.05.010

37. Dirar A.I., Alsaadi D.H.M., Wada M., Mohamed M.A., Watanabe T., Devkota H.P. Effects of extraction solvents on total phenolic and flavonoid contents and biological activities of extracts from Sudanese medicinal plants. S. Afr. J. Bot. 2019;120:261-267. https://doi.org/10.1016/j.sajb.2018.07.003


Supplementary files

1. Extraction yield, TPC, and TFC content of the ethanolic extract, at different extraction times.
Subject
Type Исследовательские инструменты
View (15KB)    
Indexing metadata
  • The aim of this study is to optimize the condition of the Persicaria pulchra (Bl.) Soják extract to obtain the highest total flavonoid content and measure its bioactivities.
  • The optimal extract exhibits good α-glucosidase inhibition with a half-maximal inhibitory concentration and indicates the potential of the plant in treating diabetes.
  • The study revealed the potentials of Persicaria pulchra (Bl.) Soják in α-glucosidase inhibition and antioxidation.

For citation:


Do N.H., Le T.M., Nguyen C.D., Ha A.C. Optimization of total flavonoid content of ethanolic extract of Persicaria pulchra (Bl.) Soják for the inhibition of α-glucosidase enzyme. Fine Chemical Technologies. 2020;15(4):39-50. https://doi.org/10.32362/2410-6593-2020-15-4-39-50

Views: 81


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)