Carbon monoxide oxidation by oxygen in water-acetonitrile solutions of palladium(II) bromide complexes in the presence of Co(II), Fe(II) and Mn(III) phthalocyaninates
https://doi.org/10.32362/2410-6593-2019-14-6-76-94
Abstract
Objectives. The objective of this paper was to compare acetylene oxidative dicarbonylation that leads to maleic anhydride with a side reaction of CO oxidation by oxygen in a PdBr2-LiBr-H2C-CH3CN system and in the presence of insoluble (Co) and soluble (Co, Fe, and Mn) phthalocyaninates (PcM).
Methods. To study the oxidation of CO to CO2, a kinetics method was used; UV and IR spectroscopy was used to determine the concentrations of initial and intermediate compounds.
Results. The knetics of CO to CO2 oxidation were investigated and the reactivity series of PcM in CO oxidation and maleic anhydride synthesis was characterized. A satisfactory correlation was observed between reaction rates and PcM concentration, as well as the nature of metal, in both processes. The IR measurements of concentrations of Pd(II) and Pd(I) intermediate carbonyl complexes, and CO2 concentrations, have made it possible to hypothesize the mechanism of CO2 generation. The effect of PcM concentration on the concentrations of Pd(II)(CO) in CO oxidation has been shown.
Conclusions. Based on the data regarding CO oxidation and acetylene oxidative dicarbonylation, certain conditions have been proposed to effectively produce double-labeled maleic anhydride with 13C (from 13CO).
About the Authors
I. V. OshaninaRussian Federation
Irina V. Oshanina - Cand. of Sci. (Chemistry), Associate Professor of the Department of Chemistry and Technology of Basic Organic Synthesis.
86, Vernadskogo pr., Moscow 119571Competing Interests: no conflicts of interest
S. I. Goloborod’ko
Russian Federation
Sofya I. Golobrood’ko - Student, Department of Chemistry and Technology of Basic Organic Synthesis.
86, Vernadskogo pr., Moscow 119571Competing Interests: no conflicts of interest
E. A. Robinova
Russian Federation
Ekaterina A. Robinova - Student, Department of Chemistry and Technology of Basic Organic Synthesis.
86, Vernadskogo pr., Moscow 119571Competing Interests: no conflicts of interest
I. N. Rusnak
Russian Federation
Ilya N. Rusnak - Student, Department of Chemistry and Technology of Basic Organic Synthesis.
86, Vernadskogo pr., Moscow 119571Competing Interests: no conflicts of interest
S. A. Nikiforov
Russian Federation
Sergey A. Nikiforov - Student, Department of Chemistry and Technology of Basic Organic Synthesis.
86, Vernadskogo pr., Moscow 119571Competing Interests: no conflicts of interest
S. A. Prokhorov
Russian Federation
Sergey A. Prokhorov - Student, Department of Chemistry and Technology of Basic Organic Synthesis.
86, Vernadskogo pr., Moscow 119571Competing Interests: no conflicts of interest
O. N. Temkin
Russian Federation
Oleg N. Temkin - Dr. of Sci. (Chemistry), Professor of the Department of Chemistry and Technology of Basic Organic Synthesis.
86, Vernadskogo pr., Moscow 119571Competing Interests: no conflicts of interest
O. L. Kaliya
Russian Federation
Oleg L. Kaliya - Dr. of Sci. (Chemistry), Professor of the Department of General Chemical Technology.
86, Vernadskogo pr., Moscow 119571Competing Interests: no conflicts of interest
References
1. Klausner A., Jentsch J.D. Oxidative carbonylation. In: Cornils B., Herrmann W.A. (eds.) Applied homogeneous catalysis with organometallics compounds. Weinheim: Wiley-VCH; 1996. V. 1. P. 169-187.
2. Temkin O.N., Bruk L.G. Palladium(II, I, 0) complexes in catalytic reactions of oxidative carbonylation. Kinetics and Catalysis. 2003;44(5):601-617. https://doi.org/10.1023/A:1026161103700
3. Temkin O.N., Bruk L.G. Oxidative carbonylation -Homogeneous. In: Horvath I.T. (Ed.) Encyclopedia ofCatalysis. Hoboken, NJ, USA: Willey-Int.; 2003. V 3. P. 394-424.
4. Gabrielle B., Salerno G., Costa M. Oxidative carbonylations. In: Beller M. (Ed.) Catalytic Carbonylation Reactions. Top. Organomet. Chem. 2006;18:239-272. https://doi.org/10.1007/3418_024
5. Bruk L.G., Oshanina I.V., Gorodski S.N., Temkin O.N. Palladium complexes catalyzed of oxidative carbonylation and conjugated processes with carbon monoxide. Rossiiskii khim. zhurnal = Russian Chem. J. 2006;50(4):103-114 (in Russ.).
6. Temkin O.N., Shestakov G.K., Treger Yu.A. Atsetilen: Khimiya. Mekhanizmy reaktsii. Tekhnologiya (Acetylene: Chemistry. Reaction mechanisms. Technology). Temkin O.N. (Ed.). Moscow: Khimiya; 1991. 415 p. (in Russ.).
7. Wu X.-F., Neumann H., Beller M. Palladium-catalyzed oxidative carbonylation reactions. Chem. Suc. Chem. 2013;6:229-241. https://doi.org/10.1002/cssc.201200683
8. Quintero-Duque S., Dyballa K.M., Fleischer I. Metal-catalyzed carbonylation of alkynes: Key aspects and recent development. Tetrahedron Lett. 2015;56(21):2634-2650. https://doi.org/10.1016/j.tetlet.2015.04.043
9. Beller M., Wu X.-F. Transition Metal Catalyzed Carbonylation Reactions. Carbonylative Activation of C-X Bonds. New York: Springer, 2013. Р. 147-166.
10. Temkin O.N. Homogeneous catalysis with Metal Complexes: Kinetic Aspects and Mechanisms. Chicester (UK): Wiley & Sons, 2012. 830 p.
11. Elman A.R., Korneeva G.A., Noskov Yu.G., Khan V.N., Shishkina E.Yu., Negrimovsky V.M., Ponomarenko E.P, Konokhov L.O., Bruk, L.G., Oshanina, I.V., Temkin, O.N. Isotope 13C-products synthesized for medicine diagnosis. Rossiiskii khim. zhurnal = Russian Chem. J. 2013;57(5):3-24 (in Russ.).
12. Bruk L.G., Kozlova A.P., Marshakha O.V., Oshanina I.V., Temkin O.N., Kaliya O.L. New catalytic systems for oxidative carbonylation of acetylene to maleic anhydride. Russian Chem. Bull. 1999;48(10):1875-1881. https://doi.org/10.1007/BF02494740
13. Nishimura T., Onoue T., Ohe K., Uemura S. Palladium(II)-catalyzed oxidation of alcohols to aldehydes and ketones by molecular oxygen. J. Org. Chem. 1999;64(18):6750-6755. https://.doi.org/10.1021/jo9906734
14. Stahl S.S. Palladium oxidase catalysis: Selective oxidation of organic chemicals by direct dioxygen-coupled turnover. Angew. Chem. Int. Ed. Engl. 2004;43(26):3400-3420. https://doi.org/10.1002/anie.200300630
15. Konnick M.M., Guzei I.A., Stahl S.S. Characterization of peroxo and hydroperoxo intermediates in the aerobic oxidation of A-heterocyclic-carbene-coordinated palladium(0). J. Am. Chem. Soc. 2004;126(33):10212-10213. https://doi.org/10.1021/ja046884u
16. Landis C.R., Morales C.M., Stahl S.S. Insights into the spin-forbidden reaction between L2Pd0 and molecular oxygen. J. Am. Chem. Soc. 2004;126(50):16302-16303. http://dx.doi.org/10.1021/ja044674b
17. Popp B.V. Stahl S.S. Insertion of molecular oxygen into a palladium-hydride bond: Computational evidence for two nearly isoenergetic pathways. J. Am. Chem. Soc. 2007;129(14):4410-4422. https://doi.org/10.1021/ja069037v
18. Konnick M.M., Stahl S.S. Reaction of molecular oxygen with a Pd(II)-hydride to produce a Pd(II)-hydroperoxide: experimental evidence for an HX-reductive-elimination pathway. J. Am. Chem. Soc. 2008;130(17):5753-5762. https://doi.org/10.1021/ja7112504
19. Popp B.V., Stahl S.S. Mechanism of Pd(OAc)<sub>2</sub>/ pyridine catalyst reoxidation by O<sub>2</sub>: Influence of labile monodentate ligands and identification of a biomimetic mechanism for O<sub>2</sub> activation. Chem. Eur. J. 2009;15(12):2915-2922. https://doi.org/10.1002/chem.200802311
20. Konnick M.M., Decharin N., Popp B.V., Stahl S.S. O<sub>2</sub> insertion into a palladium(II)-hydride bond: Observation of mechanistic crossover between HX-reductive-elimination and hydrogen-atom-abstraction pathways. Chem. Sci. 2011;2:326-330. https://doi.org/10.1039/C0SC00392A
21. Decharin N., Popp B.V., Stahl S.S. Reaction of O<sub>2</sub> with [(-)-sparteine]Pd(H)Cl: Evidence for an intramolecular [H-L]+ “reductive elimination” pathway. J. Am. Chem. Soc. 2011;133(34):13268-13271. https://doi.org/10.1021/ja204989p
22. Bruk L.G., Temkin O.N., Abdullaeva A.S., Timashova E.A., Bukina E.Yu., Odintsov K.Yu., Oshanina I.V. Coupled processes in carbon monoxide oxidation: Kinetics and mechanism of CO oxidation by oxygen in PdX<sub>2</sub>-organic solvent-water systems. Kinetics and Catalysis. 2010;51(5):678-690. https://doi.org/10.1134/S0023158410050095
23. Timashova E.A., Putin A.Yu., Bychkova L.G., Bruk L.G., Temkin O.N., Oshanina I.V. The conjugated process of carbon monoxide oxidation and cyclohexane hydrocarboxylation to cyclohexanecarboxylic acid. Vestnik MITKHT = Fine Chem. Technol. 2014;9(3):57-63 (in Russ.).
24. Bruk L.G., Temkin O.N., Oshanina I.V., Kozlova А.Р, Vorontsov E.V. Mechanistic Study of Acetylene Carbonylation to Anhydrides of Dicarboxylic Acids in Solution of Pal1adium Complexes. Mol. Catal. 1995;104(1):9-16. https://doi.org/10.1016/1381-1169(96)00108-2
25. Golodov, V.A., Sheludyakov, Yu.L., Di R.I. Fokanov V.K. Role of intermediate carbonyl-complexes in reduction of Pd(II) and Cu(II) by carbon monoxide. Kinetics and Catalysis. 1977;18(1):193-196.
26. Sheludyakov Yu.L., Golodov V.A. Catalytic copper (II) reduction by carbon monoxide in a hydrochloric acid medium. J. Mol. Catalysis. 1980;7(3):383-388. https://doi.org/10.1016/0304-5102(80)80065-4
27. Golodov V.A., Kuksenko E.L., Taneeva G.V. Catalysis of the reduction of Pd(II) complexes by carbon-monoxide in aqueous-solutions, by means of Cu(I) compounds. Kinetics and Catalysis. 1982; 23(1):212-213.
28. Golodov, V.A., Kuksenko, E.L., Taneeva, G.V., Alekseev, A.M., Geminova, M.V. Reduction of copper(II) salts by carbon monoxide in aqueous solutions of palladium(II) complexes. Kinetics and Catalysis. 1984; 25(2):268-272.
29. Gruzinskaia N.G., Jumakaeva, B.S., Golodov, V.A. Reduction of Pd(II) complexes by carbon monoxide in aqueous solutions. The effect of oxidants. Kinetics and Catalysis. 1995; 36(2):191-195.
30. Sheludyakova, V.S., Kuperman A.F., Brailovsky S.M., Temkin O.N. Kinetics and mechanism of carbon monoxide oxidation by ferric - chloride aqueous palladium chloride solutions. Kinetics and Catalysis. 1981; 22(2):279-283.
31. Golodov, V.A., Glubokovskikh, N.G., Taneeva, G.V. Catalytic reduction of Fe(III) by CO in the presence of Pd(II) complexes in aqueous-solutions. Reaction Kinetics and Catalysis Letters. 1983; 22(1-2):101-105. https://doi.org/10.1007/BF02064814
32. Brailovsky S.M., Temkin O.N. Shestakova, VS., Kuperman A.F. Mechanism of the addition of water to molecules of acetylene, ethylene and carbon-monoxide coordinated by metal complexes. Kinetics and Catalysis. 1981; 22(6):1149-1152.
33. Golodov, V.A., Jumakaeva, B.S. Catalytic oxidation of CO by heteropolyacids (HPA) and dioxygen in the presence of Pd(II) salt-HPA-H<sub>2</sub>O system. J. of Mol. Catalysis. 1986; 35(3):309-315. https://doi.org/10.1016/0304-5102(86)87078-X
34. Zhizhina E.G., Kuznetsova L.I., Matveev K.I. Oxidation of CO to CO<sub>2</sub> by phosohotungsttovanadic heteropolyacids in the presence of Pd(II) aquacomplex. Kinetics and Catalysis. 1988; 29(1):113-117.
35. Golodov V.A., Fasman A.V., Sokolsky D.V. Catalytic activation of carbon monoxide in homogeneous and heterogeneous systems. In: Proceeding of the Fifth International Congress on Catalysis, Miami Beach, Fla., 2026 August, 1972. Amsterdam, London, NJ: Elsevier, 1973.
36. Kuznetsova, L.I., Matveev K.I., Zhizhina, E.G. Oxidation of carbon-monoxide by dioxygen in the presence of palladium catalysts - prospects for the creation of new, low-temperature catalysts for the reaction. Kinetics and Catalysis. 1985; 26(5):887-900.
37. Zhizhina E.G., Matveev K.I., Kuznetsova L.I. Oxidation of carbon monoxide to carbon dioxide by p-benzoquinone in the presence of an aqua-complexes of Pd(II). Kinetics and Catalysis. 1985; 26(6):1161-1167.
38. Putin, A.Y., Katsman, E.A., Bruk, L.G., State of Palladium Complexes in the PdBr<sub>2</sub>-LiBr-CH<sub>3</sub>CN-H<sub>2</sub>O Catalytic System, Used to Obtain Succinic Anhydride. Russian J. Phys. Chem. A. 2019; 93(2):222-230. https://doi.org/10.1134/S0036024419010230
39. Ademi L., Constable E.C., Neuburger M., Schaffner S., Housecrof, C.E. Trans-Diacetonitriledibromopalladium (II). Acta Crystallographica Section E: Structure Reports Online. 2006; 62(5), с. m1059-m1061. https://doi.org/10.1107/S1600536806013377
40. Volchenskova, I.I., Yatsimirskii, K.B. State of Palladium Chloride in the system of acetonitrile - chloride anion. Zh. Neorg. Khim. = Russian J. Inorg. Chem. 1973; 18(7):1875-1882 (in Russ.).
41. Andreni B.P., Dellamico D.B., Calderazzo F., Venturi M.G., Pelizzi G., Carbonyl complexes of noble metals with halide ligands. II. Palladium(II): preparation of Pd<sub>2</sub>Br<sub>4</sub>(CO)<sub>2</sub> and [PdI<sub>3</sub>(CO)]“: crystal structures of [Bu<sub>4</sub>N][PdX<sub>3</sub>(CO)] X : Cl or Br). J. Organomet. Chem. 1988; 354(3):369-380. https://doi.org/10.1016/0022-328X(88)80662-4
42. Stromnova T.A., Moiseev I.I. Palladium carbonyl complexes. Russian Chem. Rev. 1998;67(6):485-514. https://doi.org/10.1070/RC1998v067n06ABEH000414
43. Colton R., Farthing R.H., McCormick M.J. Carbonyl halides of the group VIII transition metals: VI. Compounds of palladium (I). Austral. J. Chem. 1973;26(12):2607-2614. https://doi.org/10.1071/CH9732607
44. Goggin P.L., Mink J. Palladium (I) carbonyl halide complexes. J. Chem. Soc., Dalton Trans. 1974;(5):534-540. https://doi.org/10.1039/DT9740000534
45. Kulik A.V., Temkin O.N., Bruk L.G., Zavodnik V.E., Belsky V.K., Minin V.V. Palladium(I) and palladium(0) carbonyl bromide complexes. Russian Chemical Bulletin. 2005; 54(6):1391-1397. https://doi.org/10.1007/s11172-005-0416-z
46. Goggin P.L., Goodfellow R.J., Herbert I.R., Orpen A.G. Bridging by carbonyl vs. halide ligands: X-ray crystal structure of [NBu<sub>4</sub>n]<sub>2</sub>[Pd<sub>2</sub> (μ-CO)<sub>2</sub>ClJ. J. Chem. Soc. Chem. Commun. 1981:1077-1079. https://doi.org/10.1039/C39810001077
47. Kulik, A.V., Bruk, L.G., Temkin, O.N., Aleksandrov, G.G, Nefedov, S.E., Eremenko, I.L. Crystal structure of the Pd(I) carbonyl chloride complex (NH<sub>4</sub>)<sub>2</sub>[Pd<sub>2</sub>Cl<sub>4</sub>(CO)<sub>2</sub>]. Doklady Chemistry. 2002;383(2):69-71. https://doi.org/10.1023/A:1014731323864
48. Baig S., Richard B., Serp P., Mijoule C., Hussein K., Gulhery N., Barhelat J., Kalck P. Synthesis and theoretical study of a series of dipalladium (I) complexes containing the Pd2(μ-CO)<sub>2</sub> core. Inorg. Chem. 2006;45:1935-1944. https://doi.org/10.1021/ic050910n
49. Li H., Chen G.X., Yang H.Y., Wang X.L., Liang J.H., Liu P.X., Chen M., Zheng N.F. Shape-controlled synthesis of surface-clean ultrathin palladium nanosheets by simply mixing a dinuclear Pd(I) carbonyl chloride complex with H2O. Angew. Chem. Int. Ed. 2013;52(32):8368-8372. https://doi.org/10.1002/ange.201303772
50. Mimoun H. Oxygen transfer from inorganic and organic peroxides to organic substrates: A common mechanism? Angew. Chem. Int. Ed. 1982;21(10):734-750. https://doi.org/10.1002/anie.198207341
Supplementary files
|
1. Fig. 4. UV spectra of PdBr2–AN and PdBr2–ADN solutions, in 0.01 mm cuvettes (solid line) and 0.1 mm cuvettes (dashed line) | |
Subject | ||
Type | Исследовательские инструменты | |
View
(84KB)
|
Indexing metadata ▾ |
Review
For citations:
Oshanina I.V., Goloborod’ko S.I., Robinova E.A., Rusnak I.N., Nikiforov S.A., Prokhorov S.A., Temkin O.N., Kaliya O.L. Carbon monoxide oxidation by oxygen in water-acetonitrile solutions of palladium(II) bromide complexes in the presence of Co(II), Fe(II) and Mn(III) phthalocyaninates. Fine Chemical Technologies. 2019;14(6):76-94. https://doi.org/10.32362/2410-6593-2019-14-6-76-94