Synthesis and Antithrombotic Activity Determination of (2-Methyl-4-[4-methyl-2-(4-trifluoromethylphenyl)-thiazole-5-ylmethylsulfanyl]phenoxy)acetic Acid Derivatives
https://doi.org/10.32362/2410-6593-2019-14-3-60-69
Abstract
The article proposes an approach for obtaining the derivatives of hetarylmethylthioaryloxyalcane PPARS/fi agonists containing sulfoxide and sulfone fragments in the linker, the parent compound for the synthesis being GSK-516 - (2-methyl-4-[4-methyl-2-(4-trifiuoromethylph.enyl)-th.iazole-5-ylmethylsulfanyl]phenoxy)acetic acid obtained as a result of sequential S- and O-alkylation of mercaptocresol by thiazolyl methyl chloride and ethyl bromacetate at key stages. Derivatives of GSK-516, as well as sulfoxide and sulfone were synthesized for the first time by oxidating acyclic sulfur with meta-chloroperbenzoic acid. The structures of the synthesized compounds were confirmed by HPLC-MS, elemental analysis and JH, 13C NMR. The spectral characteristics of target compounds were compared by NMR. When passing from sulfide to sulfoxide and further to sulfone, it was found that the shift of the methylene group connecting the thiazole ring with the sulfur atom is moved to the weaker field. The antithrombotic activity of the obtained compounds was investigated by measuring platelet aggregation in platelet-rich plasma by the Bourne turbidimetric method. It was stated that sulfonic derivative GSK-516 has the highest antithrombotic activity.
About the Authors
D. V. MininRussian Federation
Dmitry V. Minin - Postgraduate Student of the Chair of Chemistry and Technology of Organic Synthesis/
9, Miusskaya sq., Moscow 125047
Competing Interests: not
S. V. Popkov
Russian Federation
Sergey V. Popkov - Ph.D. (Chemistry), Associate Professor, Head of the Chair of Chemistry and Technology of Organic Synthesis.
9, Miusskaya sq., Moscow 125047
Scopus Author ID 11940635000, ResearcherID A-5014-2016
Competing Interests: not
M. L. Burdeyny
Russian Federation
Maxim L. Burdeyny - Assistant of Professor of the Chair of Chemistry and Technology of Organic Synthesis.
9, Miusskaya sq., Moscow 125047
Scopus Author ID 36457454700, ResearcherID T-1483-2019
Competing Interests: not
V. M. Goncharov
Russian Federation
Valery M. Goncharov - D.Sc. (Chemistry), Associate Professor of the Chair of Chemistry and Technology of Organic Synthesis.
9, Miusskaya sq., Moscow 125047
Competing Interests: not
S. V. Vasilevsky
Russian Federation
Sergey V. Vasilevsky, Ph.D. (Chemistry), Associate Professor of the Chair of Chemistry and Technology of Organic Synthesis.
9, Miusskaya sq., Moscow 125047
Competing Interests: not
References
1. Mangelsdorf D.J., Evans R.M. The RXR heterodimers and orphan receptors. Cell. 1995; 83: 841-850. https://doi.org/10.1016/0092-8674(95)90200-7
2. Issemann I., Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature. 1990; 347:645-650. https://doi.org/10.1038/347645a0
3. Gronemeyer Н., Gustafsson J.A., Laudet V. Principles for modulation of the nuclear receptor superfamily. Nat. Rev. Drug Discov. 2004; 3:950-964. https://doi.org/10.1038/nrd1551
4. Ivashkin V.T., Mayevskaya M.V. Lipotoxicity and metabolic disorders in obesity. Rossiyskiy zhurnal gastroentemlogii, gepatologii, koloproktologii [Russian Journal of Gastroenterology, Hepatology, Ooloproctology] 2010; (1):4-13. (in Russ.)
5. Karthick T., Tandon P, Singh S. Evaluation of structural isomers molecular interactions reactivity descriptors and vibrational analysis of tretinoin. Anal. Sci. 2017; 33:8387. https://doi.org/10.2116/analsci.33.83
6. Thacher S.M., Vasudevan J., Chandraratna R.A. Therapeutic applications for ligands of retinoid receptors. Curr. Pharm. Des. 2000; 6:25-58. https://doi.org/10.2174/1381612003401415
7. Li Y, Lambert M.H., Xu H.E. Activation of nuclear receptors: A perspective from structural genomics. Structure. 2003; 11:741-746. https://doi.org/10.1016/S0969-2126(03)00133-3
8. Ahmetov I.I., Astratenkova I.V., Rogozkin V.A. Association of a PPAR polymorphism with human physical performance. Molecular Biology. 2007; 41(5):776-780.
9. Thevis M., Moler I., Thomas A., Beuck S., Rodchenkov G. , Bornatsch W., Geyer H., Schanzer W. Characterization of two major urinary metabolites of the PPAR delta-agonist GW1516 and implementation of the drug in routine doping controls. Anal. Bioanal. Chem. 2010; 396:2479-2491. https://doi.org/10.1007/s00216-009-3283-x
10. Sobolevsky T., Dikunets M., Sukhanova I., Virus E., Rodchencov G. Detection of PPAR5 agonists GW1516 and GW0742 and their metabolites in human urine. Drug Test. Anal. 2012; 4:754-760. https://doi.org/10.10.1002/dta.1413
11. Ham J., Kang H. A highly efficient synthesis of antiobestic ligand GW501516 for the peroxisome proliferator-activated receptor d through in situ protection of the phenol group by reaction with a Grignard reagent. Tetrahedron Lett. 2005; 46:6683-6686. https://doi.org/10.1016/).tetlet.2005.07.145
12. Pereira R., Gaudon C., Iglesias B., Germain P., Gronemeyerb H., de Lera A.R. Synthesis of the PPARp/5-selective agonist GW501516 and C4-thiazole-substituted analogs. Bioorg. Med. Chem. Lett. 2006; 16:49-54. https://doi.org/10.1016/j.bmcl.2005.09.060
13. Wei Z.L., Kozikowski A.P A short and efficient synthesis of the pharmacological research tool GW501516 for the peroxisome proliferator-activated receptor 5. J. Org. Chem. 2003; 68:9116-1918. https://doi.org/10.1021/jo035140g
14. Sznaidman M.L., Haffner C.D., Maloney P.R., Fivush A., Chao E., Goreham D., Sierra M.L., LeGrumelec C., Xu H. E. Novel selective small molecule agonists for peroxisome proliferator-activated receptor 5 (PPAR5) - synthesis and biological activity. Bioorg. Med. Chem. Lett. 2003; 13:15171521. https://doi.org/10.1016/S0960-894X(03)00207-5
15. Murugesan D., Mital A., Kaiser M., Shackleford D.M., Morizzi J., Katneni K., Campbell M., Hudson A., Charman S. A., Yeates C., Gilbert I.H. Discovery and structure-activity relationships of pyrrolone antimalarials. J. Med. Chem. 2013; 56:2975-2990. https://doi.org/10.1021/jm400009c
16. Kang H., Chin J., Lee J. Selenalzole derivative having ligand which activates peroxisome proliferator activated receptor (PPAR), preparing method thereof and usage of the chemical compounds: Pat. US 2012316346A1. No US13/579,295. proir. 02/25/2010; publ. 12/13/2012.
17. Bovee T.F.H., Blokland M., Kersten S., Hamers A.R.M., Heskamp H.H., Essers M.L., Nielen M.W.F., Ginkel L.A. Bioactivity screening and mass spectrometric confirmation for the detection of PPAR5 agonists that increase type 1 muscle fibres. Anal. Bioanal. Chem. 2014; 406:705-713. https://doi.org/10.1007/s00216-013-7520-y
18. Tachibana K., Ishimoto K., Takahashi R., Kadono H., Awaji T., Yuzuriha T., Tanaka T., Hamakubo T., Sakai J., Kodama T., Aoki S., Doi T. Development of a ligand screening tool using full-length human peroxisome proliferator-activated receptor-expressing cell lines to ameliorate metabolic syndrome. Chem. Pharm. Bull. 2019; 67:199-202. https://doi.org/10.1248/cpb.c18-00627
19. Pivovarova E.N., Dushkin M.I., Perepechaeva M.L., Коbzev V.F., Trufakin V.A., Маrkel A.L. All signs of metabolic syndrome in the hypertensive isiah rats are associated with increased activity of transcription factors PPAR, LXR, PXR, and CARr in the liver. Biomeditsimkaya khimiya [Biomedical Chemistry]. 2011; 57(4):435-445. (in Russ.)
20. Wensaas A.J., Rustan A., Lovstedt K., Kull B., Wikstrom S., Drevon C., Hallen S. Cell-based multiwell assays for the detection of substrate accumulation and oxidation. J. Lipid Res. 2007; 48:961-967. https://doi.org/10.1194/jlr.D600047-JLR200
21. Bojic L.A., Burke A.C., Chhoker S.S., Telford D.E., Sutherland B.G., Edwards J.Y., Sawyez C.G., Tirona R.G., Yin H., Pickering J.G., Huff M.W. Peroxisome proliferator-activated receptor 5 agonist GW1516 attenuates diet-induced aortic inflammation, insulin resistance, and atherosclerosis in low-density lipoprotein receptor knockout mice. Arterioscler. Thromb. Vasc. Biol. 2014; 34:52-60. https://doi.org/10.1161/ATVBAHA.113.301830
22. Ferhana Y.A., Matthew G.H., Desvergne B., Warner T.D., Mitchell J.A. PPARbeta/delta agonists modulate platelet function via a mechanism involving PPAR receptors and specific association/repression of PKCalpha - brief report. Arterioscler. Thromb. Vasc. Biol. 2009; 29:1871-1873. https://doi.org/10.1161/ATVBAHA.109.193367
23. Born G.V Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature. 1962; 194:927-929.
24. Minin D.V, Popkov S.V, Burdeinyi M.L., Mantrov S.N., Goncharov V.M., Vasilevsky S.V Determination of antithrombotic activity of methylthiazole-and triazole-containing PPAR delta/beta agonists. Medline. 2018; 19:117130. (in Russ.)
Supplementary files
|
1. Fig. 1. Structural formula of PPAR agonists. | |
Subject | ||
Type | Research Instrument | |
View
(47KB)
|
Indexing metadata ▾ |
Review
For citations:
Minin D.V., Popkov S.V., Burdeyny M.L., Goncharov V.M., Vasilevsky S.V. Synthesis and Antithrombotic Activity Determination of (2-Methyl-4-[4-methyl-2-(4-trifluoromethylphenyl)-thiazole-5-ylmethylsulfanyl]phenoxy)acetic Acid Derivatives. Fine Chemical Technologies. 2019;14(3):60-69. (In Russ.) https://doi.org/10.32362/2410-6593-2019-14-3-60-69