Preview

Fine Chemical Technologies

Advanced search

SYNTHESIS AND STUDY OF RHENIUM(IV) DISULPHIDE

https://doi.org/10.32362/2410-6593-2017-12-6-83-90

Full Text:

Abstract

Synthesis and study of complex chalcogenides in the low oxidation state opens unexpected new opportunities of studying some fundamental problems of condensed matter physics. Dichalcogenides of transition metals, i.e., compounds with the general formula MX2, where M is molybdenum, tungsten, rhenium etc., and X is sulphur, selenium or tellurium, are especially interesting. These dichalcogenides find applications in optoelectronic devices, radiophotonics, in laser physics, communication technology, etc. This study contains a survey of literature concerning the synthesis of sulphides of transition elements from different groups of the Periodic table in low oxidation states. A method of direct hightemperature synthesis of ReS2 from source components has been proposed and implemented. The synthesized compound was identified by the X-ray fluorescence, method of photoelectron spectroscopy and IR absorption spectroscopy. We show that rhenium(IV) disulphide crystallizes in CdI2 structural type. X-ray photoelectron spectroscopy shows that rhenium in the oxidation state of four is present. IR spectrum shows that rhenium(IV) disulphide structure in contrast to molybdenum(IV) disulphide is characterized by a greater deformation of the layers forming the crystal structure.

About the Authors

A. M. Ionov
Institute of Solid State Physics RAS
Russian Federation

Dr.Sc. (Physics and Mathematics), Professor

2, Academica Osipyana st., Chernogolovka, Moscow region, 142432, Russia



M. R. Kobrin
Moscow Technological Universit
Russian Federation

Postgraduate Student, K.A. Bolshakov Chair of Chemistry and Technology of Rare and Scattered Elements, Nanoscale and Composite Materials

86, Vernadskogo Pr., Moscow 119571, Russia



R. N. Mozhchil
Institute of Solid State Physics RAS
Russian Federation

Postgraduate Student

2, Academica Osipyana st., Chernogolovka, Moscow region, 142432, Russia



A. S. Sigov
Moscow Technological Universit
Russian Federation

Dr.Sc. (Physics and Mathematics), Professor, Academician of RAS, President

78, Vernadskogo Pr., Moscow 119454, Russia



Yu. V. Syrov
Moscow Technological Universit
Russian Federation

Ph.D. (Physics and Mathematics), Associate Professor of the Chair of Materials Science and Technology of Functional Materials and Structures,

1, Malaya Pirogovskaya st., Moscow 119435, Russia



V. V. Fomichev
Moscow Technological Universit
Russian Federation

Dr.Sc. (Chemistry), Professor, K.A. Bolshakov Chair of Chemistry and Technology of Rare and Scattered Elements, Nanoscale and Composite Materials

86, Vernadskogo Pr., Moscow 119571, Russia



References

1. Goswamig. A, Nikam P.S. A study of vacuumdeposited films of CrTe and CrSe on single crystals // Thin Solid Films. 1972. V. 11. P. 353–364.

2. White J.G., Dismukes J.P. Rare earth sesquiselenides and sesquitellurides with the Sc2S3 structure // Inorg. Chem. 1965. V. 4. № 7. P. 970–973.

3. Franzen H.F., Smeggi J., Conard B.R. The group IV di-transition metal sulfides and selenides // Mat. Res. Bull. 1967. V. 2. № 12. P. 1087–1092.

4. Tsubakava I. One the magnetic properties of vanadium sulfide and selenide // J. Phys. Soc. 1959. V. 14. № 2. P. 196–198.

5. Szuszkiewicz W., Dynowska E.,Witkowska B. Spin-wave measurements on hexagonal MnTe of NiAstype structure by inelastic neutron scattering // Phys. Rev. B. 2006. V. 73. P. 1–7.

6. Narayan P.B.V., Finnore D.K. Superconducrivity in the niobium and scandium monosulfide systems at pressure up to 20 kbar // J. Less-Common Metals. 1978. V. 61. P. 231–235.

7. Sathe D.J., Chate P.A., Sargar S.B., Kite S.V., Sande Z.D. Properties of chemically-deposited nanocrystalline MoS2 thin films // J. Mater. Sci: Mater. Electron. 2015. V. 27. № 4. Р. 3833–3838.

8. Cao S., Liu T., Hussain S., Zeng W., Pan F., Peng X. Synthesis and characterization of novel chrysanthemumlike tungsten disulfide (WS2) nanostructure: Structure, growth and optical absorption property // J. Mater. Sci: Mater. Electron. 2015. V. 26. P. 809–814.

9. Sun J., Gu Y-J., Lei D., Lau S.P. Mechanistic understanding of excitation correlated nonlinear optical properties in MoS nano sheets and nano dots: The role of exciton resonance // ACS Photonics. 2016. P. 1–34.

10. Seyler K.L., Schaibley J.R., Gong P., Rivera P. Electrical control of second-harmonic generation in a WSe monolayer transistor // Nature Nanotechnology. 2015. V. 73. P. 1–5.

11. Lamfers H.-J., Meetsma A., Wiegers G.A., De Boer J.L. The crystal structure of some rhenium and technetium dichalcogenides // J. Alloys and Compounds. 1996. V. 241. P. 34–39.

12. Dismukesandj J.P., Lethite G. Rare earth sesquiselenides and sesquitellurides with the Sc2S3 structure // Inorg. Chem. 1965. V. 4. № 7. P. 970–973.

13. Yao X., Franzen H.F. Structure refinement and chromium solubility for Zr2S // J. Less-Common Metals. 1988. V. 142. P. 27–29.

14. Pajaczkowska A. Chemical transport of MnS and MnSe using HCl as a transporting agent // Mat. Res. Bull. 1983. V. 18. P. 397–403.

15. Gordon R.A., Yang D., Crozier E.D., Jiang D.T., Frindt R.F. Structures of exfoliated single layers of WS2, MoS2 and MoSe2 in aqueous suspension // Phys. Rev. B. 2002. V. 65. P. 65–73.

16. Hu Z., Zhang S. The electronic properties tuned by the phase transition between the semiconducting and metallic phase of monolayer MoS2/WS2// Phase Transitions: A Multinat. J. 2015. V. 88. Iss. 7. P. 726–734.

17. Zhao X., Dai X., Xia С. Magnetic properties of two nearest Cu-doped monolayer WS2: A first-principles study // Solid State Commun. 2015. V. 217. P. 66–69.

18. Bui V.Q., Pham T.-T., Le D.A., Thi C.M., Le H. A first-principles investigation of various gas (CO, H2O, NO, and O2) absorptions on a WS2 monolayer: Stability and electronic properties // J. Phys.: Condens. Matter. 2015. V. 27. № 11. doi.org/10.1088/0953-8984/27/30/305005.

19. Siddiqui G.U., Ali J., Choi K.H., Jang Y., Lee K. Fabrication of blue luminescent MoS2 quantum dots by wet grinding assisted eco-solvent sonication // J.Luminescence. 2016. V. 169. P. 342–347.

20. Xie H., Jiang B., He J., Xia X., Pan F. Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts // Tribology Int. 2016. V. 93. Part A. P. 63–70.

21. Kumar K.S., Li W., Choi M., Kim S.M., Kim J. Synthesis and lithium storage properties of MoS2 nanoparticles prepared using supercritical ethanol // Chem. Eng. J. 2016. V. 285. P. 517–527.

22. Jassim N.M., Wang K., Han X., Long H., Wang B., Lu P. Plasmon assisted enhanced second-harmonic generation in single hybrid Au/ZnS nanowires // Opt. Mater. 2016. V. 64. P. 257–261.

23. Shi S.L., Xu S.J., Xu Z.-H., Roy V.A.L., Che C.-M. Broadband second harmonic generation from ZnO nano-tetrapods // Chem. Phys. Lett. 2011. V. 506. № 4–6. P. 226–229.

24. Hu H., Wang K., Long H., Han X., Chen H., Wang B., Lu P. Concentrated second-harmonic generation from a single Al-covered ZnS nanobelt // Laser Photonics Rev. 2016. P. 3–8. DOI: 10.1002/lpor.201600263.

25. Ho C.H., Huang Y.S., Electronic structure of ReS2 and ReSe2 from first-principles calculations, photoelectron spectroscopy, and electrolyte electroreflectance // Phys. Rev. B. 1999. V. 60. № 23. P. 766–771.

26. Marzic J.V., Kershaw R. Photoelectronic properties of ReS2 and ReSe2 single crystals // J. Solid State Chem. 1984. № 51. P. 170–175.

27. Huang T-P., Lin D-Y. Polarized thermoreflectance and reflectance study of ReS2 and ReS2: Au single crystals // Jap. J. Appl. Phys. 2011. № 50. P. 1–6.

28. Kim Y., Kang B. Direct synthesis of large-area continuous ReS2 lms on a exible glass at low temperature // 2D Mater. 2017. № 4. P. 1–9.

29. Aliaga J.A., Zepeda T.N. Microspherical ReS2 as a high-performance hydrodesulfurization catalyst // Catal. Lett. 2017. V. 147. Iss. 5. P. 1243–1251.

30. Shcheglov P.A., Drobot D.V. Heterogeneous equilibria in the rhenium–oxygen system // Zhurnal fizicheskoi khimii (Russian Journal of Phys. Chem.). 2006. V. 80. № 11. P. 2044–2050. (in Russ.).

31. Alcock N.W., Kjekshus A. Crystal structure of ReS2 // Acta Chem. Scand. 1965. V. 19. P. 79–94.

32. Wildervank J.C., Jellinek F. The dichalcogenides of technecium and rhenium // J. Less-Common Metals. 1970. V. 24. P. 73–81.

33. Fomichev V.V., Poloznikova M.E., Kondratov O.I. Structural features, spectral and energy characteristics of molybdates and tungstates of alkaline elements // Uspekhi Khimii (Russian Chemical Review). 1992. V. 61. Iss. 9. P. 1603–1622. (in Russ.).


For citation:


Ionov A.M., Kobrin M.R., Mozhchil R.N., Sigov A.S., Syrov Yu.V., Fomichev V.V. SYNTHESIS AND STUDY OF RHENIUM(IV) DISULPHIDE. Fine Chemical Technologies. 2017;12(6):83-90. (In Russ.) https://doi.org/10.32362/2410-6593-2017-12-6-83-90

Views: 144


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)