INTEGRAL TRANSFORMATION FOR THE THIRD BOUNDARY-VALUE PROBLEM OF NON-STATIONARY HEAT CONDUCTIVITY WITH A CONTINUOUS SPECTRUM OF EIGENVALUES
https://doi.org/10.32362/2410-6593-2017-12-3-81-86
Abstract
About the Author
E. M. KartashovRussian Federation
Moscow 119571, Russia
References
1. Kartashov E.M. The method of integral transformations in the analytic theory of the thermal conductivity of solids // Izvestiya RAN. Energetika (Bulletine of RAS. Power Engineering). 1993. № 2. P. 99–127. (in Russ.).
2. Kartashov E.M. Calculation of temperature fields in solids based on improved convergence of FourierHankel series // Izvestiya RAN. Energetika (Bulletine of RAS. Power Engineering). 1993. № 3. P. 106–125. (in Russ.).
3. Kartashov E.M. Analytical methods in the theory of thermal conductivity of solids. M.: Vysshaya shkola Publ., 2001. 540 p. (in Russ.).
4. Koshlyakov N.S., Gliner E.B., Smirnov E.M. Equations in partial derivatives of mathematical physics. M.: Vysshaya shkola Publ., 1970. 710 p. (in Russ.).
5. Volkov I.K., Kanatnikov A.N. Integral transformations and operational calculus. M.: N.E. Bauman MGTU Publ., 1996. 228 p. (in Russ.).
6. Kartashov E.M., Kudinov V.A. Analytical theory of heat conductivity and applied thermoelasticity. M.: URSS Publ., 2012. 653 p. (in Russ.).
7. Kartashov E.M., Mikhailova N.A. Integral relations for analytic solutions of the generalized equation of nonstationary heat conductivity // Vestnik MITHT (Fine Chem. Technologies). 2011. V. 6. № 3. P. 106–110. (in Russ.).
8. Carslow G.G., Eger D. Thermal conductivity of solids. M.: Nauka Publ., 1964. 487 p. (in Russ.).
9. Sneddon I. Fourier transformations. Moscow: Publ. of Foreign Liter., 1955. 667 p. (in Russ.).
Review
For citations:
Kartashov E.M. INTEGRAL TRANSFORMATION FOR THE THIRD BOUNDARY-VALUE PROBLEM OF NON-STATIONARY HEAT CONDUCTIVITY WITH A CONTINUOUS SPECTRUM OF EIGENVALUES. Fine Chemical Technologies. 2017;12(3):81-86. (In Russ.) https://doi.org/10.32362/2410-6593-2017-12-3-81-86