INTEGRAL TRANSFORMATION FOR THE THIRD BOUNDARY-VALUE PROBLEM OF NON-STATIONARY HEAT CONDUCTIVITY WITH A CONTINUOUS SPECTRUM OF EIGENVALUES
Abstract
About the Author
E. M. KartashovRussian Federation
Moscow 119571, Russia
References
1. Kartashov E.M. The method of integral transformations in the analytic theory of the thermal conductivity of solids // Izvestiya RAN. Energetika (Bulletine of RAS. Power Engineering). 1993. № 2. P. 99–127. (in Russ.).
2. Kartashov E.M. Calculation of temperature fields in solids based on improved convergence of FourierHankel series // Izvestiya RAN. Energetika (Bulletine of RAS. Power Engineering). 1993. № 3. P. 106–125. (in Russ.).
3. Kartashov E.M. Analytical methods in the theory of thermal conductivity of solids. M.: Vysshaya shkola Publ., 2001. 540 p. (in Russ.).
4. Koshlyakov N.S., Gliner E.B., Smirnov E.M. Equations in partial derivatives of mathematical physics. M.: Vysshaya shkola Publ., 1970. 710 p. (in Russ.).
5. Volkov I.K., Kanatnikov A.N. Integral transformations and operational calculus. M.: N.E. Bauman MGTU Publ., 1996. 228 p. (in Russ.).
6. Kartashov E.M., Kudinov V.A. Analytical theory of heat conductivity and applied thermoelasticity. M.: URSS Publ., 2012. 653 p. (in Russ.).
7. Kartashov E.M., Mikhailova N.A. Integral relations for analytic solutions of the generalized equation of nonstationary heat conductivity // Vestnik MITHT (Fine Chem. Technologies). 2011. V. 6. № 3. P. 106–110. (in Russ.).
8. Carslow G.G., Eger D. Thermal conductivity of solids. M.: Nauka Publ., 1964. 487 p. (in Russ.).
9. Sneddon I. Fourier transformations. Moscow: Publ. of Foreign Liter., 1955. 667 p. (in Russ.).
Review
For citations:
Kartashov E.M. INTEGRAL TRANSFORMATION FOR THE THIRD BOUNDARY-VALUE PROBLEM OF NON-STATIONARY HEAT CONDUCTIVITY WITH A CONTINUOUS SPECTRUM OF EIGENVALUES. Fine Chemical Technologies. 2017;12(3):81-86. (In Russ.) https://doi.org/10.32362/2410-6593-2017-12-3-81-86