Fine Chemical Technologies

Advanced search

Theoretical study of the

Full Text:


Theoretical calculations of the potential energy surfaces along the minimum energy pathway have been performed for elementary step-wise dehydration reactions of molecules and ions of light-metal hydroaluminates (Li, Na, K, Mg, Ca and Zn) by using the density functional (B3LYP) and coupled cluster (CCSD(T)) methods with the 6-311++G** basis set.

About the Authors

A. A. Mikhaylin
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation

N. M. Klimenko
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation

O. P. Charkin
Институт проблем химической физики РАН
Russian Federation


1. Aldridge S., Downs A.J. Hydrides of the main-group metals: New variations on an old theme // Chem Rev. 2001. V. 101. P. 3305−3365.

2. Grochala W., Edwards P. Hydrides of the chemical elements for the storage and production of hydrogen // Chem. Rev. 2004. V. 104. P.1283−1315.

3. Orimo S., Nakamori Y., Eliseo J.R., Zuttel A., Jensen C.M. Complex hydrides for hydrogen storage // Chem. Rev. 2007. V. 107. P. 4111-4132.

4. Brinks H.W., Hauback D.C. Crystal structure and thermodynamic stability of the lithium alanates LiAlH4 and Li3AlH6 // J. Alloy Compd. 2003. V. 354. P. 143-147.

5. Wang P., Kang X.-D., Cheng H.-M. Exploration of the nature of active Ti species in metallic Ti-doped NaAlH4 // J. Phys. Chem. B. 2005. V. 109. P. 20131-20136.

6. Andrews L., Wang X. Infrared spectra of magnesium hydride molecules, complexes, and solid magnesium dihydride // J. Phys. Chem. A. 2004. V. 108. P. 11511-11520.

7. Goebbert D.J., Hernandez H., Francisco J.S., Wenthold P.G. The binding energy and bonding in dialane // J. Am. Chem. Soc. 2005. V. 127. P. 11684-11689.

8. Ascuitto E., Crespo A., Estrin D.A. Thermal and solvent effects on the coordination structure of LiAlH4: a computational study // Chem. Phys. Lett. 2002. V. 353. P. 178-184.

9. Vajeeston P., Ravindran P., Kjekshus A., Fjellvag H. Crystal structure of KAlH4 from first principle calculations // J. Alloys Compd. 2004. V. 363. P. L7-11.

10. Dompablo M.A.A., Ceder G. First principles investigations of complex hydrides AMH4 and A3MH6 (A = Li, Na, K, M = B, Al, Ga) as hydrogen storage systems // J. Alloys Compd. 2004. V. 364. P. 6-12.

11. Kang J.K.J., Lee Y., Muller R., Goddard W.A. Hydrogen storage in LiALH4: Predictions of the crystal structures and reaction mechanisms of intermediate phases from quantum mechanics // J. Chem. Phys. 2004. V. 121. P. 10623-10633.

12. Shen M., Liang C., Schaefer H.F. The tetramer of borane and its heavier valence-isoelectronic analogs: M4H12 with M = B, Al, and Ga // Chem. Phys. 1993. V. 171. P. 325-345.

13. Becke A.D. Density-functional thermochemistry. III. The role of exact exchange // J. Chem. Phys. 1993. V. 98. P. 5648-5652.

14. Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density // Phys. Rev. 1988. V. B37. P. 785-789.

15. Shavitt I., Bartlett R.J. Many-body methods in chemistry and physics: MBPT and coupled-cluster theory. - Cambridge: Cambridge University Press, 2009. 552 p.

16. Чаркин О.П., Боженко К.В., Болдырев А.И. Перераспределение электронной плотности и безбарьерные пути простейших реакций присоединения // Журн. неорган. химии. 1979. Т. 24. № 3. С. 588-593.

17. Чаркин О.П. Стабильность и структура газообразных неорганических молекул, радикалов и ионов. Гл. 4. - М.: Наука, 1980. 278 с.

18. Gaussian 03, Revision C.01 / M.J. Frisch, G.W. Trucks, H.B. Schlegel [et al.]. - Wallingford CT: Gaussian, Inc., 2004.

19. Soloveichik G., Jae-Hyuk H., Peter W., Yan Gao Stephens, Andrus M., Rijssenbeek J., Zhao J.-C. Ammine magnesium borohydride complex as a new material for hydrogen storage: Structure and properties of Mg(BH4)2∙2NH3 // J. Inorg. Chem. 2008. V. 47. P. 4290-4298.

20. Bogdanovic B., Schwickardi M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials // J. Alloys Compd. 1997. V. 253. P. 1-9.

21. Bogdanovic B., Brand R.A., Marjanovic A., Schwickardi M. Metal doped sodium aluminum hydrides as potential new hydrogen storage materials // J. Alloys Compd. 2000. V. 302. P. 36-58.

22. Bogdanovic B., Schwickardi M. Ti-doped NaAlH4 as a hydrogen-storage material - preparation by Ti-catalyzed hydrogenation of aluminum powder in conjunction with sodium hydride // Appl. Phys. A. 2001. V. 72. P. 221-223.

23. Bogdanovic B., Felderhoff M., Kaskel S., Pommerin A., Schlichte K., Schuth F. Improved hydrogen storage properties of Ti-doped sodium alanate using nanoparticular titanium doping agents // Adv. Mater. 2003. V. 15. P. 1012-1015.

24. Bogdanovic B., Felderhoff M., Pommerin A., Schuth F., Spielkamp N. Advanced hydrogen storage materials based on Sc, Ce and Pr doped NaAlH4 // Adv.Mater. 2006. V. 18. P. 1198-1201.

25. Кочнев В.К., Чаркин О.П., Клименко Н.М. Теоретическое исследование активационных барьеров элементарных реакций гидрирования алюминидных кластеров X@Al12 и X@Al-12 с допантами Х = Al, Si, Ge // Журн. неорган. химии. 2009. Т. 54. С. 1175-1187.

For citation:

Mikhaylin A.A., Klimenko N.M., Charkin O.P. Theoretical study of the. Fine Chemical Technologies. 2011;6(3):77-81. (In Russ.)

Views: 44

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)