Preview

Fine Chemical Technologies

Advanced search

THERMOCHEMICAL SYNTHESIS OF NANOSTRUCTURED Y2O3: Eu3+ AND Y2O3:Bi3+,Eu3+ POWDERS AND THEIR LUMINESCENT PROPERTIES

https://doi.org/10.32362/2410-6593-2017-12-1-31-38

Full Text:

Abstract

This article describes a new method of thermochemical synthesis of luminescent nanostructured powders of Y2O3:Eu3+ and Y2O3:Bi3+, Eu3+ based on the burning of nitrate salts in the presence of a complex organic fuel consisting of a mixture of carbamide and hexamethylenetetramine (HMTA). It is established that using a combined fuel - a mixture of carbamide and HMTA - in a thermochemical reaction followed by calcination of the precursor at 650ºC gives more friable powders than the reaction with pure carbamide as a fuel, with a large amount of cavities. It is shown that when preparing Y2O3:Eu3+powders, complex compounds of anhydrous nitrates Y(NО3)3∙3СO(NH2)2 and Eu(NO3)3∙6CO(NH2)2 with urea are formed at the gel stage. They are decomposed at a higher temperature (about 1200ºС) resulting from the combustion process. As a result, corresponding crystalline oxides are formed. The europium ions replace a part of the yttrium ions in the structure of Y2O3 favouring the formation of a luminescent powder. X-ray diffraction, scanning electron microscopy, and photoluminescence spectroscopy have been used to characterize these powders. The powders synthesized in this manner (calcination at 650ºC) show a sharp peak in the X-ray diffraction picture at 2θ = 28.94° corresponding to crystalline Y2O3 particles with average particle size 62.3 nm. However, when treatment temperature is increased to 1200ºC, and the process duration is 1 h, the average particle size increases to 0.25 microns. Measurement of photoluminescence spectra of the samples revealed a maximum in the red region (λ=612 nm) when exciting at a wavelength of 395 nm (violet radiation). Luminescence intensity increases by 15% when introducing bismuth ions into the Y2O3 matrix and decreases by 30% when calcinating the Y2O3:Eu3+ powders at 1100ºС. The nanostructured Y2O3:Bi3+, Eu3+ powders obtained by the burning method can be applied in systems for protecting valuable security and industrial products, because these powders have special luminescent characteristics allowing to make visual observation of texts and tags under the radiation of LED sources without application of UV-lamps.

About the Authors

O. V. Davydova
Gomel State Technical University
Belarus
Gomel, 246746 Belarus


N. E. Drobyshevskaya
Gomel State Technical University
Belarus
Gomel, 246746 Belarus


E. N. Poddenezhny
Gomel State Technical University
Belarus
Gomel, 246746 Belarus


A. A. Boiko
Gomel State Technical University
Belarus
Gomel, 246746 Belarus


References

1. Poddenezhnyj Е.N., Bojko А.А. Classification of methods of obtaining ultrafine oxide powders // Vestnik GGTU (Bulletin of the Gomel University). 2003. № 1. P. 21–28. (in Russ.).

2. Minh L. Q., Strek W., Anh T. K., Yu K. Luminescent nanomaterials [Electronic resource] // Journal of Nanomaterials. 2007. Article ID 48312. Mode of access: http: //www.hindawi.com/journals/ jnm/2007/048312/abs/. Date of access: 07.08.12.

3. Mouzon J. Synthesis of Yb:Y2O3 nanoparticles and fabrication of transparent polycrystalline yttria ceramics. Luleå : Luleåtekniskauniversitet, 2005. 126 p.

4. Packiyaraj P., Thangadurai P. Structural and photoluminescence studies of Eu3+doped cubic Y2O3 nanophosphors //J. Luminescence. 2014. V. 145. P. 997–1003.

5. Liu F.-W., Hsu C.-H., Chen F.-S., Lu C.- H. Microwaveassistedsolvothermal preparation and photoluminescence properties of Y2O3 :Eu3+phosphors // Ceramics Int. 2012. V. 38, № 2. P. 1577–1584.

6. Huang H., Xu G.Q., Chin W.S., Gan L.M., Chew C.H. Synthesis and characterization of Eu:Y2O3 nanoparticles // Nanotechnology. 2002. V. 13, № 3. P. 318–323.

7. Psuja P., Hreniak D., Strek W. Rare-earth doped nanocrystalline phosphors for field emission displays // Journal of Nanomaterials. 2007. Article ID 81350. Mode of access: http://www.hindawi.com/journals/jnm/2007/081350/ref/. Date of access: 07.08.12.

8. Jayaramaiah J.R., Jayaramaiah R., Lakshminarasappa B.N., Nagabhushana B.M. Luminescence studies of europium doped yttrium oxide nano phosphor // Sensors and Actuators B: Chemical. 2012. V. 173. P. 234–238.

9. Anh T.K., Loc D.X., Huong T.T., Vu N., Minh L.Q. Luminescent nanomaterials containing rare earth ions for security printing // Int. J. Nanotechnology. 2011. V. 8, № 3–5. P. 335–346.

10. Gupta A., Brahme N., Prasad Bisen D. Electroluminescence and photoluminescence of rare earth (Eu,Tb) doped Y2O3 nanophosphor // J. Luminescence. 2014. V. 155. P. 112–118.

11. Hitz Breck. Yb:Y2O3 ceramic laser generates 4.2 W // Optics Letters. 2004. № 6. P. 1212–1214.

12. Belyakov А. V., Lemeshev D. О., Lukin Е. S., Val’nin G. P., Grinberg Е. Е. // Steklo i keramika (Glass and ceramics). 2006 . №8. P. 17–19 (in Russ.).

13. Chi L.S., Liu R.S., Lee B.J. Synthesis of Y2O3:Eu,Bi red phosphors by homogeneous coprecipitation and their photoluminescence behaviors // Electrochem. Soc.2005. V. 152. №. 8. Р. J93–J98.

14. Pan Y., Wu M., Su Q. Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphor // Materials Science and Engineering B. 2004. V. 106. № 3. P. 251–256.

15. Potdevin A., Chadeyron G., Boyer D., Mahiou R. Sol-gel based YAG:Ce3+ powders for applications in LED devices // Physica Status Solidi C: Current Topics in Solid State Physics. 2007. V. 4. № 1. P. 65–69.

16. Zhang Z., Feng J., Huang Z.Synthesis and characterization of BaMgAl10O17:Eu2+ phosphor prepared by homogeneous precipitation // Particuology. 2010. V. 8. № 5. P. 473–476.

17. Permin D.А. Obtaining ultra-pure yttrium oxide nanopowders by self-propagating high-temperature synthesis: dis. ... PhD (Chem.). М., 2011. 101 p. (in Russ.).

18. Kim I.S., Kim G.B., Jo M.Y. Process for amorphous complex oxide precursors and products produced therefrom: pat. US 6274110 B1, KR: Seoul, KR; publ. date: 14.08.2001.

19. Anh T. K., Benalloul P., Barthou C., thiKieu L. G., Vu N., Minh L.Q. Luminescence, energy transfer, and upconversion mechanisms of Y2O3 nanomaterials dopedwith Eu3+, Tb3+, Tm3+, Er3+ and Yb3+ Ions // J. Nanomaterials. 2007. Article ID 48247. Mode of access: http://www.hindawi.com/journals/jnm/2007/048247/abs/. Date of access: 07.08.14.

20. Pomelova Т.А., Bakovets V.V., Korol’kov I.V., Antonova О.V., Dolgovesova I.P. The anomalous efficiency of the luminescence of sub-micron phosphorus Y2O3:Eu3+ // Fizika tverdogo tela (Solid State Physics). 2014. V. 56. № 12. P. 2410–2419. (in Russ.).


For citation:


Davydova O.V., Drobyshevskaya N.E., Poddenezhny E.N., Boiko A.A. THERMOCHEMICAL SYNTHESIS OF NANOSTRUCTURED Y2O3: Eu3+ AND Y2O3:Bi3+,Eu3+ POWDERS AND THEIR LUMINESCENT PROPERTIES. Fine Chemical Technologies. 2017;12(1):31-38. (In Russ.) https://doi.org/10.32362/2410-6593-2017-12-1-31-38

Views: 175


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)