Preview

Fine Chemical Technologies

Advanced search

Method for calculating the surface tension of hydrocarbons

Abstract

A method of surface tension calculation used by Sugden is based on the difference in the densities of a liquid and its vapor. A similar result was obtained by Bachynskyi. To expand the field of application of the formula for polar liquids Steele polarity factor was introduced. The experimental data have an error of up to 3%. The generalized processing of the experimental data by the surface tension of hydrocarbons enables to obtain a calculation formula for determining the temperature dependence of the modified surface tension of hydrocarbons. Parameters (temperature and surface tension) corresponding to minimum of free energy for the liquid – vapor phase transition were used as modification scales when constructing the generalized dependencies. The developed method was used to summarize the experimental data by the surface tension of gas condensates of different areas.

About the Authors

E. V. Rytova
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


B. A. Arutyunov
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


References

1. Buecker D., Wagner W. A reference equation of state for the thermodynamic properties of ethane for temperatures from the melting line to 675 K and pressures up to 900 MPa // J. Phys. Chem. Ref. Data. 2006. V. 35(1). P. 205–266.

2. Span R., Wagner W. Equations of state for technical applications. II. Results for nonpolar fluids // Int. J. Thermophys. 2003. V. 24(1). P. 41–109.

3. Buecker D., Wagner W. Reference equations of state for the thermodynamic properties of fluid phase n-butane and isobutane // J. Phys. Chem. Ref. Data. 2006. V. 35(2). P. 929–1019.

4. Marx V., Pruss A., Wagner W. Neue Zustandsgleichungen fuer R 12, R 22, R 11 und R 113. Beschreibung des thermodynamishchen Zustandsverhaltens bei Temperaturen bis 525 K und Druecken bis 200 MPa. – Duesseldorf: VDI Verlag. Series 19 (Waermetechnik/Kaeltetechnik). 1992. № 57.

5. Lemmon E.W., Jacobsen R.T. An international standard formulation for the thermodynamic properties of 1,1,1-trifluoroethane (HFC-143a) for temperatures from 161 to 450 K and pressures to 50 MPa // J. Phys. Chem. Ref. Data. 2000. V. 29(4). Р. 521–552.

6. Penoncello S.G., Lemmon E.W., Jacobsen R.T, Shan Z. A Fundamental equation for triflurormethane (R-23) // J. Phys. Chem. Ref. Data. 2003. V. 32(4). Р. 1473–1499.

7. Lemmon E.W., McLinden M.O., Wagner W. Thermodynamic properties of propane. IV. A reference equation of state for the thermodynamic properties of propane for temperatures from the melting line to 650 K and pressures up to 1000 MPa // J. Phys. Chem. Ref. Data. 2007.

8. Варгафтик Н.Б. Справочник по теплопроводности жидкостей и газов. – М.: Энергоиздат, 1990. 352 с.

9. Youglove B.A., Ely J.F. Properties of rluids. 2. Methane, Ethane, propane, isobutene, and normal butane // J. Phys. chem. Ref. Data. 1987. V. 16. № 4. Р. 577–797.

10. Рид Р. Свойства газов и жидкостей. – Л.: Химия, 1982. 592 c.

11. Вукалович М.П. Уравнение состояния реальных газов. – Л.: ГЭИ, 1948. 420 с.


Review

For citations:


Rytova E.V., Arutyunov B.A. Method for calculating the surface tension of hydrocarbons. Fine Chemical Technologies. 2013;8(6):59-62. (In Russ.)

Views: 285


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)