Fine Chemical Technologies

Advanced search

8-Oxo-2’-deoxyguanosine – biomarker of the oxidative stress

Full Text:


Free radical mechanism of a cell damage is one of the universal non-specific pathogenic pathways in a cause of many diseases, including cancer, neurodegenerative diseases, atherosclerosis and aging. So in nuclear and mitochondrial DNA, guanine hydroxylation to 8-position gives 8­hydroxy­2'­deoxyguanosine (8­OH­dG) and 8­oxo­7,8­dihydro­2'­deoxyguanosine (8­oxo­dG). These substances are one of the predominant products of free radical­induced oxidative damages. They are usually been applied as biomarkers of oxidative stress and carcinogenesis. The direct oxidation of guanine or incorrect inclusion of 8-oxo-dGTP from the nucleotide pool by polymerases, lead to a lack of specificity of the base pairing in DNA, favoring mutagenesis. Firstly 8-oxo-dG has been described by H. Kasai and S. Nishimura in 1983. Since then, this damage has been widely measured in various tissues and body fluids as blood, urine, brain, liver, and others. Today 8-oxo-dG is already used not only as a marker of oxidative stress, but also as a tool for prognosis of diseases and results of applied therapy. Now many efforts are focused on developing the procedure of measurement of 8-oxo-dG content in tissues and body fluids. In this paper we also discuss the role of the 8-oxo-dG as a biomarker of oxidative stress and a predictor of diseases and results of the applied therapy.

About the Authors

T. S. Nevredimova
МИТХТ им. М.В. Ломоносова, 119571, Москва, пр-т Вернадского, д. 86
Russian Federation

N. V. Marmiy
Московский государственный университет им. М.В. Ломоносова, Москва, 119991
Russian Federation

D. S. Esipov
Московский государственный университет им. М.В. Ломоносова, Москва, 119991
Russian Federation

O. V. Esipova
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation

V. I. Shvets
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation


1. Cadet J., Douki T., Ravanat J.-L. Oxidatively generated damage to the guanine moiety of DNA: Mechanistic aspects and formation in cеlls // J. Accounts Сhem. Res. 2008. V. 41. № 8. Р. 1075-1083.

2. Verhagen H., Poulsen H.E., Loft S. Reduction of oxidative DNA-damage in humans by Brussels sprouts // Carcinogenesis. 1995. V. 16. P. 969-970.

3. Dizdaroglu M. Oxidative damage to DNA in mammalian chromatin // Mutat. Res. 1992. V. 275. P. 331-342.

4. Kasai H., Hayami H. Detection and identification of mutagens and carcinogens as their adducts with guanosine derivatives // Nucl. Acids Res. 1984. V. 12. P. 2127-2136.

5. Inter-laboratory validation of procedures for measuring 8-oxo-7,8-dihydroguanine/8-oxo-7,8-dihydro-2'-deoxyguanosine in DNA // Free Radic. Res. 2002. V. 36 (3). P. 239-245.

6. Rydberg B., Johanson K.J. Estimation of DNA strand breaks in single mammalian cells. New York: Academic Press, 1978. P. 465-468.

7. Hoelzl C., Bichler J., Ferk F., Simic T., Nersesyan A., Elbling L., Ehrlich V., Chakraborty A., Knasmüller S. Methods for the detection of antioxidants which prevent age related diseases: А critical review with particular emphasis on human intervention studies // J. Physiol. Pharmacol. 2005. V. 56. № 2. P. 49-64.

8. Tomasello B., Grasso S., Malfa G., Stella S., Favetta M., Renis M. Double-face activity of resveratrol in voluntary runners: Assessment of DNA damage by comet assay // J. Med. Food. 2012. V. 15. № 5. Р. 441-447.

9. Michel C., Vincent-Hubert F. Detection of 8-oxo-dG in Dreissena polymorpha gill cells exposed to model contaminants // J. Mutat. Res. 2012. V. 24. № 1-2. P. 1-6.

10. Javeri A., Lyons J.G., Huang X.X., Halliday G.M. Downregulation of Cockayne syndrome B protein reduces human 8-oxoguanine DNA glycosylase-1 expression and repair of UV radiation-induced 8-oxo-7,8-dihydro-2'-deoxyguanine // J. Cancer Sci. 2011. V. 102. № 9. P. 1651-1658.

11. Collins A.R., Oscoz A.A., Brunborg G., Gaivao I., Giovannelli L., Kruszewski M., Smith C.C., Stetina R. The comet assay: Тopical issues // Mutagenesis. 2008. V. 23 (3). P. 143-151.

12. Rossner P. Jr., Sram R.J. Immunochemical detection of oxidatively damaged DNA // J. Free Radic. Res. 2012. V. 46. № 4. Р. 492-522.

13. Garratt L.W., Mistry V., Singh R., Sandhu J.K., Sheil B., Cooke M.S., Sly P.D. Interpretation of urinary 8-oxo-7,8-dihydro-2'-deoxyguanosine is adversely affected by methodological inaccuracies when using a commercial ELISA // J. Free Radic. Biol. Med. 2010. V. 48. № 11. Р. 1460-1464.

14. Kaneko K., Kimata T., Tsuji S., Ohashi A., Imai Y., Sudo H., Kitamura N. Measurement of urinary 8-oxo-7,8-dihydro-2-deoxyguanosine in a novel point-of-care testing device to assess oxidative stress in children // J. Clin. Chim. Acta. 2012. V. 413. P. 23-24.

15. Helbock H.J., Beckman K.B. DNA oxidation matters: The HPLS-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine // Proc. Natl. Acad. Sci. USA. 1998. V. 95. P. 288-293.

16. Floyd R.A., West M.S., Eneff K.L. Conditions influencing yield and analysis of 8-hydroxy-2'-deoxyguanosine in oxidatively damaged DNA // Anal. Biochem. 1990. V. 188. P. 155-158.

17. Есипов Д.С., Сидоренко Е.В., Есипова О.В., Горбачева Т.А., Невредимова Т.С., Крушинский А.Л., Кузенков В.С., Реутов В.П. Определение отношения 8-оксо-2-дезоксигуанозина к 2-дезоксигуанозину в ДНК с помощью обращено-фазовой ВЭЖХ в сочетании с амперометрической детекцией // Вестник МИТХТ. 2010. Т. 5. № 3. С. 69-74.

18. Есипов Д.С., Есипова О.В., Зиневич Т.В., Горбачева Т.А., Невредимова Т.С., Крушинский А.Л., Кузенков В.С., Реутов В.П. Анализ содержания 8-оксо-2-дезоксигуанозина в ДНК клеток мозга крыс при изучении защитного действия кортексина // Вестник МИТХТ. 2012. Т.7. № 1. С. 59-63.

19. Jean-Luc R. Measuring oxidized DNA lesions as biomarkers of oxidative stress: An analytical challenge // J. Pharm. Sci. 2005. V. 30. P. 100-113.

20. Degan P., Bonassi S., De Caterina M. In vivo accumulation of 8-hydroxy-2'-deoxyguanosine in DNA correlates with release of reactive oxygen species in Fanconi's anaemia families // Сarcinogenesis. 1995. V. 16. P. 735-742.

21. Haghdoost S. Biomarker of oxidative stress and their application for assessment of individual radio sensitivity. Stockholm: Stockholm University, 2005. 43 p.

22. Hwang E., Bowwen P.E. DNA damage, a biomarker of carcinogenesis: Its measurement and modulation by diet and environment // Food Sci. Nutrition. 2007. V. 47. P. 27-50.

23. Wu L.L., Chiou C.C., Chang P.U. Urinary 8-oxo-dG: A marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics // Clin. Chim. Acta. 2004. V. 339. P. 1-9.

24. Lam P.M., Mistry V., Marczylo T.H., Konje J.C., Evans M.D., Cooke M.S. Rapid measurement of 8-oxo-7,8-dihydro-2'-deoxyguanosine in human biological matrices using ultra-high-performance liquid chromatography-tandem mass spectrometry // Free Radic. Biol. Med. 2012. V. 15. № 52. P. 2057-2063.

25. Zhang B., Guo L.H., Greenberg M.M. Quantification of 8-oxo-dGuo lesions in double-stranded DNA using a photoelectrochemical DNA sensor // Anal. Chem. 2012. V. 84. № 14. Р. 6048-6053.

26. Taniguchi Y., Koga Y., Fukabori K., Kawaguchi R., Sasaki S. OFF-to-ON type fluorescent probe for the detection of 8-oxo-dG in DNA by the Adap-masked ODN probe // Bioorg. Med. Chem. 2012. V. 22. № 1. P. 543-546.

27. Меньщикова Е.Б., Зенков Н.К., Ланкин В.З., Бондарь И.А., Труфакин В.А. Окислительный стресс. Патологические состояния и заболевания. Новосибирск: АРТА, 2008. 284 c.

28. Haghdoost S., Svoboda P., Naslud I., Harms-Ringdahl M., Tilikides A., Skog S. Can 8-oxo-dG be used as a predictor for individual radiosensitivity? // Int. J. Radiat. Oncol. Biol. Phys. 2001 V. 50. № 2. P. 405-410.

29. Roszkowski K., Olinski R. Urinary 8-oxoguanine as a predictor of survival in patients undergoing radiotherapy // J. Cancer Epidemiol. Biomarkers Prev. 2012. V. 21. № 4. P. 629-634.

30. Borrego S., Vazquez A., Dasí F., Cerdá C., Iradi A., Tormos C., Sánchez J.M., Bagán L., Boix J., Zaragoza C., Camps J., Sáez G. Oxidative stress and DNA damage in human gastric carcinoma: 8-Oxo-7,8-dihydro-2'-deoxy-guanosine (8-oxo-dG) as a possible tumor marker // Int. J. Mol. Sci. 2013. V. 14. № 2. P. 3467-3486.

31. Dorszewska J., Florczak J., Rozycka A., Kempisty B., Jaroszewska-Kolecka J., Chojnacka K., Trzeciak W.H., Kozubski W. Oxidative DNA damage and level of thiols as related to polymorphisms of MTHFR, MTR, MTHFD1 in Alzheimer's and Parkinson's diseases // Acta Neurobiol. Exp. (Wars). 2007. V. 67. № 2. P. 113-129.

32. Choi D.H., Cristóvão A.C., Guhathakurta S., Lee J., Joh T.H., Beal M.F., Kim Y.S. NADPH oxidase 1-mediated oxidative stress leads to dopamine neuron death in Parkinson's disease // Antioxid. Redox. Signal. 2012. V. 15/16. № 339. P. 1033-1045.

33. Sato S., Mizuno Y., Hattori N. Urinary 8-hydroxydeoxyguanosine levels as a biomarker for progression of Parkinson disease // J. Neurology. 2005. V. 64. P. 1081-1083.

34. Wua L.L., Chioud C.-C., Change Pi-Yueh, Wua J.T. Urinary 8-OH-dG: А marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics // J. Clin. Chim. Acta. 2004. V. 339. P. 1-9.

35. Bashir S., Harris G., Denman M.A. Oxidative DNA damage and cellular sensitivity to oxidative stress in human autoimmune diseases // Ann. Rheum. Dis. 1993. V. 2. P. 659-667.

36. Lisitsyna T.A, Durnev A.D. The effect of bemetil on the production of DNA antibodies in patients with systemic lupus erythematosus // Eksp. Klin. Farmakol. 1999. V. 62. P. 38-41 (in Russ.).

37. Avouac J., Borderie D., Ekindjian O.G., Kahan A., Allanore Y. High DNA oxidative damage in systemic sclerosis // J. Rheumatol. 2010. V. 37. № 12. P. 2540-2547.


For citations:

Nevredimova T.S., Marmiy N.V., Esipov D.S., Esipova O.V., Shvets V.I. 8-Oxo-2’-deoxyguanosine – biomarker of the oxidative stress. Fine Chemical Technologies. 2014;9(5):3-10. (In Russ.)

Views: 178

ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)