Fine Chemical Technologies

Advanced search

Liposomal systems for the delivery of biologically active compounds in the treatment of the certain diseases

Full Text:


Based on the aggregate results from several different studies, this article will provide readers a survey view about the ability to drug delivery one of the most typical nano structures – liposome and the use of this structure for various therapeutic purposes, including anticancer therapy, antibacterial therapy and gene therapy.

About the Authors

N. H. Quang
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation
Department of Biotechnology and Bionanotechnology

V. V. Chupin
Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region , 141700
Russian Federation

D. I. Prokhorov
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation
Department of Biotechnology and Bionanotechnology

K. A. Zhdanova
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 119571
Russian Federation
Department of Chemistry and Technology of Biologically Active Compounds

V. I. Shvets
M.V. Lomonosov Moscow State University of Fine Chemical Technologies, 86, Vernadskogo pr., Moscow 11957; Scientific-Research Institute of General Pathology and Pathophysiology, RAMN, Moscow, 125315; Drugs Technology Ltd., Moscow region, 141400
Russian Federation
Department of Biotechnology and Bionanotechnology


1. Weissig V. Liposomes: Methods and Protocols. Vol. 1: Pharmaceutical Nanocarriers. New York: Humana Press, 2010. P. 1-27.

2. Швец В.И., Каплун А.П., Краснопольский Ю.М., Степанов А.Е., Чехонин В.П. От липосом семидесятых к нанобиотехнологии XXI века // Рос. нанотехнологии. 2008. Т. 3. № 11. С. 52-67.

3. Yoshinobu F., Hideki I. Nanoparticles for cancer therapy and diagnosis // Advanced Powder Technology. 2006. V. 17. P. 1-28.

4. Zhang J.A., Anyarambhatla G., Ma L., Ugwu S., Xuan T., Sardone T., Ahmad I. Development and characterisation of a novel Cremophor EL free liposome based paclitaxel (LEP-ETU) formulation // Eur. J. Pharm. Biopharm. 2005. V. 59. P. 177-187.

5. Yang T., Cui F.D., Choi M.K., Cho J.W., Chung S.J., Shim C.K., Kim D.D. Enhanced solubility and stability of PEGylated liposomal paclitaxel: In vitro and in vivo evaluation // Int. J. Pharm. 2007. V. 338. P. 317-326.

6. Daniele B., DeVivo R., Perrone F., Lastoria S., Tambaro R., Izzo F., Fiore F., Vallone P., Pignata S. Phase-I clinical trial of liposomal daunorubicin in hepatocellular carcinoma complicating liver cirrhosis // Anticancer Res. 2000. V. 20. P. 1249-1251.

7. Wollina U., Hohaus K., Schonlebe J., Haroske E., Kostler E. Liposomal daunorubicin in tumor stage cutaneous T-cell lymphoma: report of three cases // J. Cancer Res. Clin. Oncol. 2003. V. 129. P. 65-69.

8. Fiorillo A., Maggi G., Greco N., Migliorati R., D'Amico A., DeCaro M.D., Sabbatino M.S., Buffardi F. Second-line chemotherapy with the association of liposomal daunorubicin, carboplatin and etoposide in children with recurrent malignant brain tumors // J. Neurooncol. 2004. V. 66. P. 179-185.

9. Peacock G.F., Ji B., Wang C.K., Lu D.R. Cell culture studies of a carborane cholesteryl ester with conventional and PEG liposomes // Drug Deliv. 2003. V. 10. P. 29-34.

10. Shabbits J.A., Mayer L.D. High ceramide content liposomes with in vivo antitumor activity // Anticancer Res. 2003. V. 23. P. 3663-3669.

11. Ozpolat B., Lopez-Berestein G., Adamson P., Fu C.J., Williams A.H. Pharmacokinetics of intravenously administered liposomal all-trans-retinoic acid (ATRA) and orally administered ATRA in healthy volunteers // J. Pharm. Pharm. Sci. 2003. V. 6. P. 292-301.

12. Krieger M., Eckstein N., Schneider V., Koch M., Royer H.D., Jaehde U., Bendas G. Overcoming cisplatin resistance of ovarian cancer cells by targeted liposomes in vitro // Int. J. Pharm. 2010. V. 389. P. 10-17.

13. Le Chevalier T., Brisgand D., Douillard J.Y., Pujol J.L., Alberola V., Monnier A., Riviere A., Lianes P., Chomy P., Cigolari S. Randomized study of vinorelbine and cisplatin versus vindesine and cisplatin versus vinorelbine alone in advanced non-small-cell lung cancer: results of a European multicenter trial including 612 patients // J. Clin. Oncology. 1994. V. 12. P. 360-367.

14. Guillot T., Spielmann M., Kac J., Luboinski B., Tellez-Bernal E., Munck J.N., Bachouchi M., Armand J.P., Cvitkovic E. Neoadjuvant chemotherapy in multiple synchronous head and neck and esophagus squamous cell carcinomas // Laryngoscope. 1992. V. 102. P. 311-319.

15. Hirai M., Minematsu H., Hiramatsu Y., Kitagawa H., Otani T., Iwashita S., Kudoh T., Chen L., Li Y., Okada M., Salomon D.S., Igarashi K., Chikuma M., Seno M. Novel and simple loading procedure of cisplatin into liposomes and targeting tumor endothelial cells // Int. J. Pharm. 2010. V. 391. P. 274-283.

16. Stathopoulos G.P., Boulikas T., Vougiouka M., Deliconstantinos G., Rigatos S., Darli E., Viliotou V., Stathopoulos J.G. Pharmacokinetics and adverse reactions of a new liposomal cisplatin (Lipoplatin): phase I study // Oncology Reports. 2005. V. 13. P. 589-595.

17. Arienti C., Tesei A., Ravaioli A., Ratta M., Carloni S., Mangianti S., Ulivi P., Nicoletti S., Amadori D., Zoli W. Activity of lipoplatin in tumor and in normal cells in vitro // Anti-cancer Drugs. 2008. V. 19. P. 983-990.

18. Boulikas T., Stathopoulos G.P., Volakakis N., Vougiouka M. Systemic Lipoplatin infusion results in preferential tumor uptake in human studies // Anticancer Research. 2005. V. 25. P. 3031-3039.

19. Mylonakis N., Athanasiou A., Ziras N., Angel J., Rapti A., Lampaki S., Politis N., Karani-kas C., Kosmas C. Phase II study of liposomal cisplatin (Lipoplatin) plus gemcitabine versus cisplatin plus gemcitabine as first line treatment in inoperable (stage IIIB/IV) non-small cell lung cancer // Lung Cancer. 2010. V. 68. P. 240-247.

20. Farhat F.S., Temraz S., Kattan J., Ibrahim K., Bitar N., Haddad N., Jalloul R., Hatoum H.A., Nsouli G., Shamseddine A.I. A phase II study of lipoplatin (liposomal cisplatin) / vinorelbine combination in HER-2/neu-negative metastatic breast cancer // Clinical Breast Cancer. 2011. V. 11. P. 384-389.

21. Carlton L.G., John F., Glenn J.S., Charles O.T. Pathogenesis of bacterial infections in animals. Fourth Edition. US: Wiley-Blackwell, 2010. 664 p.

22. Omri A., Suntres Z.E., Shek P.N. Enhanced activity of liposomal polymyxin B against Pseudomonas aeruginosa in a rat model of lung infection // Biochem. Pharmacol. 2002. V. 64. P. 1407-1413.

23. Dana M.S. Recent advances in microbiology. Canada: Apple Academic Press Inc, 2012. P. 77-89.

24. Alipour M., Halwani M., Omri A. Antimicrobial effectiveness of liposomal polymyxin B against resistant Gram-negative bacterial strains // Int. J. Pharm. 2008. V. 355. P. 293-298.

25. Sinha J., Mukhopadhyay S., Das N., Basu M.K. Targeting of liposomal andrographolide to L. donovani-infected macrophages in vivo // Drug Deliv. 2000. V. 7. P. 209-213.

26. Frezard F., Michalick M.S., Soares C.F., Demicheli C. Novel methods for the encapsulation of meglumine antimoniate into liposomes // Braz. J. Med. Biol. Res. 2000. V. 33. P. 841-846.

27. Sande L., Sanchez M., Montes J. Liposomal encapsulation of vancomycin improves killing of methicillin-resistant Staphylococcus aureus in a murine infection model // J. Antimicrob. Chemother. 2012. V. 67. P. 2191-2194.

28. Muppidi K., Wang J., Betageri G. PEGylated liposome encapsulation increases the lung tissue concentration of vancomycin // Antimicrob. Agents Chemother. 2011. V. 55. P. 4537-4542.

29. Kadry A.A., Al-Suwayeh S.A., Abd-Allah A.R. Treatment of experimental osteomyelitis by liposomal antibiotics // J. Antimicrob. Chemother. 2004. V. 54. P. 1103-1108.

30. Gubernator J., Druis-Kawa Z., Dorotkiewicz-Jach A. In vitro antimicrobial activity of liposomes containing ciprofloxacin, meropenem and gentamicin against gram-negative clinical bacterial strains // Lett. Drug Des. Discov. 2007. V. 4. P. 297-304.

31. Drulis-Kawa Z., Dorotkiewicz-Jach A., Gubernator J. The interaction between Pseudomonas aeruginosa cells and cationic PC:Chol:DOTAP liposomal vesicles versus outer-membrane structure and envelope properties of bacterial cell // Int. J. Pharm. 2009. V. 367. P. 211-219.

32. Chono S., Tanino T., Seki T. Efficient drug delivery to alveolar macrophages and lung epithelial lining fluid following pulmonary administration of liposomal ciprofloxacin in rats with pneumonia and estimation of its antibacterial effects // Drug. Dev. Ind. Pharm. 2008. V. 34. P. 1090-1096.

33. Omri A., Ravaoarinoro M., Poisson M. Incorporation, release and in vitro antibacterial activity of liposomal aminoglycosides against Pseudomonas aeruginosa // J. Antimicrob. Chemother. 1995. V. 36. P. 631-639.

34. Omri A., Ravaoarinoro M. Comparison of the bactericidal action of amikacin, netilmicin and tobramycin in free and liposomal formulation against Pseudomonas aeruginosa // Chemotherapy. 1996. V. 42. P. 170-176.

35. Mugabe C., Halwani M., Azghani A.O. Mechanism of enhanced activity of liposome-entrapped aminoglycosides against resistant strains of Pseudomonas aeruginosa // Antimicrob. Agents Chemother. 2006. V. 50. P. 2016-2022.

36. Halwani M., Mugabe C., Azghani A.O. Bactericidal efficacy of liposomal aminoglycosides against Burkholderia cenocepacia // J. Antimicrob. Chemother. 2007. V. 60. P. 760-769.

37. Rukholm G., Mugabe C., Azghani A.O. Antibacterial activity of liposomal gentamicin against Pseudomonas aeruginosa: a time-kill study // Int. J. Antimicrob. Agents. 2006. V. 27. P. 247-252.

38. Halwani M., Blomme S., Suntres Z.E. Liposomal bismuth-ethanedithiol formulation enhances antimicrobial activity of tobramycin // Int. J. Pharm. 2008. V. 358. P. 278-284.

39. Halwani M., Hebert S., Suntres Z.E. Bismuth-thiol incorporation enhances biological activities of liposomal tobramycin against bacterial biofilm and quorum sensing molecules production by Pseudomonas aeruginosa // Int. J. Pharm. 2009. V. 373. P. 141-146.

40. Alhariri M., Omri A. Efficacy of liposomal bismuth-ethanedithiol-loaded tobramycin after intratracheal administration in rats with pulmonary pseudomonas aeruginosa infection // Antimicrob. Agents Chemother. 2013. V. 57. P. 569-578.

41. Alhajlan M., Alhariri M., Omri A. Efficacy and safety of liposomal clarithromycin and its effect on pseudomonas aeruginosa virulence factors // Antimicrob. Agents Chemother. 2013. V. 57. P. 2694-2704.

42. Deng J.C., Moore T.A., Newstead M.W. CpG oligodeoxynucleotides stimulate protective innate immunity against pulmonary Klebsiella infection // J. Immunol. 2004. V. 173. P. 5148-5155.

43. Puangpetch A., Anderson R., Huang Y.Y. Cationic liposomes extend the immunostimulatory effect of CpG oligodeoxynucleotide against Burkholderia pseudomallei infection in BALB/c mice // Clin. Vaccine Immunol. 2012. V. 19. P. 675-683.

44. Gaspar M.M., Cruz A., Penha A.F. Rifabutin encapsulated in liposomes exhibits increased therapeutic activity in a model of disseminated tuberculosis // Int. J. Antimicrob. Agents. 2008. V. 31. P. 37-45.

45. Deol P., Khuller G.K., Joshi K. Therapeutic efficacies of isoniazid and rifampin encapsulated in lung-specific stealth liposomes against Mycobacterium tuberculosis infection induced in mice // Antimicrob. Agents Chemother. 1997. V. 41. P. 1211-1214.

46. Basu N., Sett R., Das P.K. Down-regulation of mannose receptors on macrophages after infection with Leishmania donovani // Biochem. J. 1991. V. 277. P. 451-456.

47. Rathore A., Jain A., Gulbake A. Mannosylated liposomes bearing Amphotericin B for effective management of visceral Leishmaniasis // J. Liposome Res. 2011. V. 21. P. 3333-3340.

48. Cencig S., Coltel N., Truyens C. Parasitic loads in tissues of mice infected with Trypanosoma cruzi and treated with AmBisome // PLoS Negl. Trop. Dis. 2011. V. 5 (6). е1216.

49. Jadhav M.P., Shinde V.M., Chandrakala S. A randomized comparative trial evaluating the safety and efficacy of liposomal amphotericin B (Fungisome) versus conventional amphotericin B in the empirical treatment of febrile neutropenia in India // Indian J. Cancer. 2012. V. 49. P. 107-113.

50. Crystal R.G. Transfer of genes to humans: early lesions and obstacles to success // Science 270. 1995. Р. 404-410.

51. Gao X., Huang L. Cationic liposome mediated gene transfer // Gene Ther. 1995. V. 2. P. 710-722.

52. Tomlinson E., Rolland A.P. Controllable gene therapy: pharmaceutics of non viral gene delivery systems // J. Contr. Rel. 1996. V. 39. P. 357-372.

53. Sharma A., Sharma U.S. Liposomes in drug delivery: progress and limitations // Int. J. Pharm. 1997. V. 154. P. 123-140.

54. Zou Y., Zong G., Ling Y.H., Perez-Soler R. Development of cationic liposome formulations for intratracheal gene therapy of early lung cancer // Cancer Gene Ther. 2000. V. 7. P. 683-696.

55. Bandyopadhyay P., Kren B.T., Ma X., Steer C.J. Enhanced gene transfer into HuH-7 cells and primary rat hepatocytes using targeted liposomes and polyethylenimine // Biotechniques. 1998. V. 25. P. 282-284.

56. Kawaura C., Hasegawa S., Hirashima N., Nakanishi M. Monosialoganglioside containing cationic liposomes with a cationic cholesterol derivative promote the efficiency of gene trans fection in mammalian culture cells // Biol. Pharm. Bull. 2000. V. 23. P. 778-780.

57. Ishiwata H., Suzuki N., Ando S., Kikuchi H., Kitagawa T. Characteristics and biodistribution of cationic liposomes and their DNA complexes // J. Contr. Rel. 2000. V. 69. P. 139-148.

58. Ozpolat B., Sood A., Lopez-Berestein G. Nanomedicine based approaches for the delivery of siRNA in cancer // J. Intern. Med. 2010. V. 267. P. 44-53.

59. Tseng Y.C., Mozumdar S., Huang L. Lipid-based systemic delivery of siRNA // Advanced Drug Delivery Reviews. 2009. V. 61. P. 721-731.

60. Han S.E., Kang H., Shim G.Y. Novel cationic cholesterol derivative-based liposomes for serum-enhanced delivery of siRNA // Int. J. Pharm. 2008. V. 353. P. 260-269.

61. Spagnou S., Miller A.D., Keller M. Lipidic carriers of siRNA: differences in the formulation, cellular uptake, and delivery with plasmid DNA // Biochemistry. 2004. V. 43. P. 13348-13356.

62. Sato A., Takagi M., Shimamoto A. Small interfering RNA delivery to the liver by intravenous administration of galactosylated cationic liposomes in mice // Biomaterials. 2007. V. 28. P. 1434-1442.

63. Pirollo K.F., Chang E.H. Targeted delivery of small interfering RNA: approaching effective cancer therapies // Cancer Res. 2008. V. 68. P. 1247-1250.

64. Hughes J., Yadava P., Mesaros R. Liposomal siRNA delivery // Methods Mol. Biol. 2010. V. 605. P. 445-459.

65. Gray M.J., Van Buren G., Dallas N.A. Therapeutic targeting of neuropilin-2 on colorectal carcinoma cells implanted in the murine liver // J. Natl. Cancer Inst. 2008. V. 100. P. 109-120.

66. Merritt W.M., Lin Y.G., Spannuth W.A. Effect of interleukin-8 gene silencing with liposome-encapsulated small interfering RNA on ovarian cancer cell growth // J. Natl. Cancer Inst. 2008. V. 100. P. 359-372.

67. Ozpolat B., Akar U., Tekedereli I. Targeted silencing of Bcl-2 by liposomal siRNA- nanovectors leads to autophagic and apoptotic cell death in in vivo breast cancer models // Proc. Annu. Meet. Am. Assoc. Cancer Res. 2008: 4928.

68. Halder J., Kamat A.A., Landen C.N. Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy // Clin. Cancer Res. 2006. V. 12. P. 4916-4924.

69. Landen C.N., Chavez-Reyes A., Bucana C. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery // Cancer Res. 2005. V. 65. P. 6910-6918.

70. Gewirtz A.M. On future's doorstep: RNA interference and the pharmacopeia of tomorrow // J. Clin. Invest. 2007. V. 117 (12). P. 3612-3614.

71. Kapoor M., Burgess D.J. Efficient and safe delivery of siRNA using anionic lipids: formulation optimization studies // Int. J. Pharm. 2012. V. 432. P. 80-90.

72. Jeffs L.B., Palmer L.R., Ambegia E.G. A scalable, extrusion-free method for efficient liposomal encapsulation of plasmid DNA // Pharm. Res. 2005. V. 22. P. 362-372.

73. Gomes-da-Silva L.C., Fonseca N.A., Moura V. Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges // Acc. Chem. Res. 2012. V. 45. P. 1163-1171.

74. Huang L., Liu Y. In vivo delivery of RNAi with lipid-based nanoparticles // Annu. Rev. Biomed. Eng. 2011. V. 13. P. 507-530.

75. Morrissey D.V., Lockridge J.A., Shaw L. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs // Nat. Biotechnol. 2005. V. 23. P. 1002-1007.

76. Judge A.D., Robbins M., Tavakoli I. Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice // J. Clin. Invest. 2009. V. 119. P. 661-673.

77. Akinc A., Querbes W., De S. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms // Mol. Ther. 2010. V. 18. P. 1357-1364.


For citations:

Quang N.H., Chupin V.V., Prokhorov D.I., Zhdanova K.A., Shvets V.I. Liposomal systems for the delivery of biologically active compounds in the treatment of the certain diseases. Fine Chemical Technologies. 2014;9(6):26-41. (In Russ.)

Views: 185

ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)