Fine Chemical Technologies

Advanced search

Creation of anthracycline prodrug

Full Text:


Although anthracycline antibiotics are widely used in the treatment of cancer, their use is limited due to severe side-effects, including irreversible cardiotoxicity and multi-drug resistance of tumor cells. One of the promising approaches towards “ideal” anthracycline is the creation of anthracycline-based prodrugs, i.e. compounds that are less active than the parent drug (or inactive) and are converted in its active form through a metabolic process. The main goal of the development of anthracycline prodrugs is to increase the selectivity of the drug (doxorubicin or daunorubicin) towards tumor cells with simultaneous decrease in toxicity to normal cells. With this aim different types of anthracycline prodrugs were designed targeting such specific characteristics of tumor cells as lower pH and oxygenation level in comparison with normal cells, higher content of different enzymes etc. Also two-stage “enzyme-prodrug” strategies which include the selective introduction of the enzyme into the tumor cells on the first step and administration of the prodrug which is the substrate for this enzyme on the second step are developed. These strategies are classified depending on the method of “introduction” of the enzyme into tumor cells: antibody-directed enzyme prodrug therapy (ADEPT), virus-directed enzyme prodrug therapy (VDEPT) and genedirected enzyme prodrug therapy (GDEPT). The review covers recent achievements in the field of creation of different types of anthracycline prodrugs

About the Author

A. N. Tevyashova
Gause Institute of New Antibiotics, Moscow, 119021
Russian Federation


1. Блохин Н.Н. Химиотерапия злокачественных опухолей. М.: Медицина, 1977. 317 c.

2. Arcamone F. Doxorubicin anticancer antibiotics. New York: Academic Press, 1981. 369 p.

3. Khadem H.S. El. Anthracycline antibiotics. New York: Academic Press, 1982. 285 p.

4. Горбунова В.А. Новые цитостатики в лечении злокачественных опухолей. М: Российский онкологический научный центр им. Н. Н. Блохина РАМН, 1998. 128 с.

5. Gewirtz D. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin // Biochem. Pharmac. 1999. V. 57. P. 727-741.

6. Silverman R. Organic chemistry of drug design and drug action. San Diego: Elsevier Academic Press, 2004. 617 р.

7. Denny W. Emerging DNA topoisomerase inhibitors as anticancer drugs // Expert Opinion Emerg. Drugs. 2004. V. 9. P. 105-133.

8. Деженкова Л.Г., Цветков В.Б., Штиль А.А. Ингибиторы топоизомераз I и II: химическая структура, механизмы действия и роль в химиотерапии опухолей // Успехи химии. 2014. Т. 83. С. 82-94.

9. Garnier-Suillerot A., Marbeuf-Gueye C., Salerno M., Loetchutinat C., Fokt I., Krawczyk M., Kowalczyk T., Priebe W. Analysis of drug transport kinetics in multidrug-resistant cells: Implications for drug action // Curr. Med. Chem. 2001. V. 8. P. 51-64.

10. Monneret C. Recent developments in the field of antitumor anthracyclines // Eur. J. Med. Chem. 2001. V. 36. P. 483-493.

11. Preobrazhenskaya M.N. Tevyashova A.N., Olsufyeva E.N., Kuo-Feng Huang, Hsu-Shan Huang. Second generation drugs - derivatives of natural antitumor anthracycline antibiotics daunorubicin, doxorubicin and carminomycin // J. Med. Sciences. 2006. V. 26. P. 119-128.

12. Олсуфьева Е.Н. Синтез и противоопухолевые свойства антрациклиновых антибиотиков, модифицированных по сахарному остатку // Биоорг. химия. 1992. Т. 8. C. 149-180.

13. Albert A., Selective Toxicity. London: Chapman and Hall, 1951. 597 p.

14. Arad-Yellin R., Eilat E. Acid labile prodrugs : pat. WO9937634, 1999.

15. Patel V.F. Acid labile immunoconjugate intermediates : pat. US5612474, 1997.

16. Damen E., de Groot F., Scheeren H. Novel anthracycline prodrugs // Expert Opinion on Therapeutic Patents. 2001. V. 11. P. 651-666.

17. Senter P.D. Anti-tumor prodrugs : pat. EP-0317956, 1989.

18. De Groot F., Damen E., Scheeren H. Anticancer prodrugs for application in monotherapy: Targeting hypoxia, tumor-associated enzymes, and receptors // Curr. Med. Chem. 2001. V. 8. P. 1093-1122.

19. Fenick D., Taatjes D., Koch T. Doxoform and daunoform: Anthracycline - formaldehyde conjugates toxic to resistant tumor cells // J. Med. Chem. 1997. V. 40. P. 2452-2461.

20. Taatjes D., Fenick D., Koch T. Epidoxoform: A hydrolytically more stable anthracycline - formaldehyde conjugate toxic to resistant tumor cells // J. Med. Chem. 1998. V. 41. P. 1306-1314.

21. Taatjes D., Koch T. Nuclear targeting and retention of anthracycline antitumor drugs in sensitive and resistant tumor cells // Curr. Med. Chem. 2001. V. 8. P. 15-29.

22. Burke P., Koch T. Doxorubicin - formaldehyde conjugate, doxoform: Induction of apoptosis relative to doxorubicin // Anticancer Res. 2001. V. 21. P. 2753-2760.

23. Burke P., Koch T. Design, synthesis and biological evaluation of doxorubicin - formaldehyde conjugates targeted to breast cancer cells // J. Med. Chem. 2004. V. 47. P. 1193-1206.

24. Swift L., Cutts S., Rephaeli A., Nudelman A., Philips D. Activation of adriamycin by the pH-dependent formaldehyde-releasing prodrug hexamethylentetramine // Mol. Cancer Therap. 2003. V. 2. P. 189-198.

25. Ghosh S., Ellerbroek S., Wu Y., Stack M. Tumor-cell mediated proteolysis: Regulatory mechanisms and functional consequences // Fibrin. Proteol. 2000. V. 14. P. 87-97.

26. Lijnen H. Molecular interactions between the plasminogen/plasmin and matrix metalloproteinase // Fibrin. Proteol. 2000. V. 14. P. 175-181.

27. Koblinski J., Ahram M., Sloane B. Unrevealing the role of proteases in cancer // Clin. Chim. Acta. 2000. V. 291. P. 113-135.

28. Zhong Y.-J., Shao L.-H., Li Y. Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy // Int. J. Oncol. 2013. V. 42. P. 373-383.

29. Dubowchik G., Firestone R. Catepsin B-sensitive dipeptide prodrugs. 1. A model study of structural requirements for efficient release of doxorubicin // Bioorg. Med. Chem. Lett. 1998. V. 8. P. 3341-3346.

30. Dubowchik G., Mosure K., Khipe J., Firestone R. Catepsin B-sensitive dipeptide prodrugs. 2. Models of anticancer drugs paclitaxel (TaxolÒ), mitomycin C and doxorubicin // Bioorg. Med. Chem. Lett. 1998. V. 8. P. 3347-3352.

31. Dubowchik G.M., Firestone R.A., Padilla L., Willner D., Hofstead S.J., Mosure K, Knipe J.O., Lasch S.J., Trail P.A. Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: Model studies of enzymatic drug release and antigen-specific in vitro anticancer activity // Bioconjug. Chem. 2002. V. 13. P. 855-869.

32. Shao L.H., Liu S.P., Hou J.X., Zhang Y.H., Peng C.W., Zhong Y.J., Liu X., Liu X.L., Hong Y.P., Firestone R.A., Li Y. Cathepsin B cleavable novel prodrug Ac-Phe-Lys-PABC-ADM enhances efficacy at reduced toxicity in treating gastric cancer peritoneal carcinomatosis: An experimental study // Cancer. 2012. V. 118. P. 2986-2996.

33. Wang Q., Zhong I.J., Yuan J.-P., Shao L.-H., Zhang J., Tang L., Liu S.-P., Hong Y.-P., Firestone R. A., Li Y. Targeting therapy of hepatocellular carcinoma with doxorubicin prodrug PDOX increases anti-metastatic effect and reduces toxicity: A preclinical study // J. Translational Med. 2013. V. 11. P. 192-203.

34. Chakrabarty P., Carl P., Weber M., Katzenellenbogen J. Plasmin-activated prodrugs for cancer chemotherapy. 2. Synthesis and biological activity of peptidyl derivatives of doxorubicin // J. Med. Chem. 1983. V. 26. P. 638-644.

35. Devy L., de Groot F., Blacher S., Hajitou A., Beusker P., Scheeren H., Foidart J., Noel A. Plasmin-activated doxorubicin prodrugs containing a spacer reduce tumor growth and angiogenesis without systemic toxicity // Faser J. 2004. V. 18. P. 565-567.

36. Garsky V., Lumma P., Feng D., Wai J., Ramljt H., Sardana M., Oliff A., Jones R., DeFeo-Jones D., Freidinger R. The synthesis of a prodrug of doxorubicin design to provide reduced systemic toxicity and greater target efficacy // J. Med. Chem. 2001. V. 44. P. 4216-4224.

37. Guang X., McLeod X. Strategies for enzyme/prodrug cancer therapy // Clinical Cancer Res. 2001. V. 7. P. 3314-3324.

38. Tietze L.F., Schmuch K. Prodrugs for targeted tumor therapies: Recent developments in ADEPT, GDEPT and PMT // Curr. Phar. Des. 2011. V. 17. P. 3527-3547.

39. Vrudhula V., Svensson H., Senter P. Cephalosporin derivatives of doxorubicin as prodrugs for activation by monoclonal antibody-beta-lactamase conjugates // J. Med. Chem. 1995. V. 38. P. 1380-1385.

40. Papot S., Tranoy I., Tillequin F., Florent J.-C., Gesson J.-P. Design of selectively activated anticancer produgs: Elimination and cyclization strategies // Curr. Med. Chem. 2002. V. 2. P. 155-185.

41. Leenders R., Damen E., Bijsterveld E., Scheeren H., Houba P., van der Meulen-Muileman I., Boven E., Haisma H. Novel anthracycline-spacer-beta-glucuronide, beta-glucoside, and beta-galactoside prodrugs for application in selective chemotherapy // Biorg. Med. Chem. 1999. V. 7. P. 1597-1560.

42. Bakina E., Wu Z., Robenblum M., Farquhar D. Intensively cytotoxic anthracycline prodrugs: glucuronides // J. Med. Chem. 1997. V. 40. P. 4013-4018.

43. Houba P., Leenders R., Boven E., Scheeren J., Pinedo H., Haisma H. Characterization of novel anthracycline prodrugs activated by human beta-glucuronidase in antibody-directed enzyme prodrug therapy // Biohem. Pharmacol. 1996. V. 52. P. 455-463.

44. Haisma H., van Muijen M., Pinedo H., Boven E. Comparison of two anthracycline based prodrugs for activation by monoclonal antibody-beta-glucuronidase conjugate in the specific treatment of cancer // Cell Biophys. 1994. V. 24-25. P. 185-192.

45. Houba P., Boven E., van der Meulen-MuilemanI., Leenders R., Scheeren J., Pinedo H., Haisma H. Pronounced antitumor efficacy of doxorubicin when given as the prodrug DOX-GA3 in combination with a monoclonal antibody beta-glucuronidase conjugate // Int. J. Cancer. 2001. V. 91. P. 550-554.

46. Houba P., Boven E., Erkelens C., Leenders R., Scheeren J., Pinedo H., Haisma H. The efficacy of the anthracycline prodrug daunorubicin-GA3 in human ovarian cancer xenografts // Br. J. Cancer. 1998. V. 78. P. 1600-1606.

47. Shabat D., Rader C., List B., Lerner R., Barbas III C. Multiple event action of a generic prodrug trigger by antibody catalysis // Proc. Natl. Acad. Sci. 1999. V. 96. P. 6925-6930.

48. Bakina E., Farquhar D. Intensely cytotoxic anthracycline prodrugs: Galactosides // Anticancer Drug Des. 1999. V. 14. P. 507-515.

49. Lu J., Lowe D., Kennedy M., Low P. Folate-target enzyme prodrug cancer therapy utilizing penicillin-V-amidase and a doxorubicin prodrug // J. Drug Target. 1999. V. 7. P. 43-53.


For citations:

Tevyashova A.N. Creation of anthracycline prodrug. Fine Chemical Technologies. 2014;9(6):11-25. (In Russ.)

Views: 197

ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)