Creation of anthracycline prodrug
- Р Р‡.МессенРТвЂВВВВВВВВжер
- РћРТвЂВВВВВВВВнокласснРСвЂВВВВВВВВРєРСвЂВВВВВВВВ
- LiveJournal
- Telegram
- ВКонтакте
- РЎРєРѕРїРСвЂВВВВВВВВровать ссылку
Full Text:
Abstract
About the Author
A. N. TevyashovaRussian Federation
References
1. Blokhin N.N. Khimioterapiya zlokachestvennykh opukholei. M.: Meditsina, 1977. 317 c.
2. Arcamone F. Doxorubicin anticancer antibiotics. New York: Academic Press, 1981. 369 p.
3. Khadem H.S. El. Anthracycline antibiotics. New York: Academic Press, 1982. 285 p.
4. Gorbunova V.A. Novye tsitostatiki v lechenii zlokachestvennykh opukholei. M: Rossiiskii onkologicheskii nauchnyi tsentr im. N. N. Blokhina RAMN, 1998. 128 s.
5. Gewirtz D. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin // Biochem. Pharmac. 1999. V. 57. P. 727-741.
6. Silverman R. Organic chemistry of drug design and drug action. San Diego: Elsevier Academic Press, 2004. 617 r.
7. Denny W. Emerging DNA topoisomerase inhibitors as anticancer drugs // Expert Opinion Emerg. Drugs. 2004. V. 9. P. 105-133.
8. Dezhenkova L.G., Tsvetkov V.B., Shtil' A.A. Ingibitory topoizomeraz I i II: khimicheskaya struktura, mekhanizmy deistviya i rol' v khimioterapii opukholei // Uspekhi khimii. 2014. T. 83. S. 82-94.
9. Garnier-Suillerot A., Marbeuf-Gueye C., Salerno M., Loetchutinat C., Fokt I., Krawczyk M., Kowalczyk T., Priebe W. Analysis of drug transport kinetics in multidrug-resistant cells: Implications for drug action // Curr. Med. Chem. 2001. V. 8. P. 51-64.
10. Monneret C. Recent developments in the field of antitumor anthracyclines // Eur. J. Med. Chem. 2001. V. 36. P. 483-493.
11. Preobrazhenskaya M.N. Tevyashova A.N., Olsufyeva E.N., Kuo-Feng Huang, Hsu-Shan Huang. Second generation drugs - derivatives of natural antitumor anthracycline antibiotics daunorubicin, doxorubicin and carminomycin // J. Med. Sciences. 2006. V. 26. P. 119-128.
12. Olsuf'eva E.N. Sintez i protivoopukholevye svoistva antratsiklinovykh antibiotikov, modifitsirovannykh po sakharnomu ostatku // Bioorg. khimiya. 1992. T. 8. C. 149-180.
13. Albert A., Selective Toxicity. London: Chapman and Hall, 1951. 597 p.
14. Arad-Yellin R., Eilat E. Acid labile prodrugs : pat. WO9937634, 1999.
15. Patel V.F. Acid labile immunoconjugate intermediates : pat. US5612474, 1997.
16. Damen E., de Groot F., Scheeren H. Novel anthracycline prodrugs // Expert Opinion on Therapeutic Patents. 2001. V. 11. P. 651-666.
17. Senter P.D. Anti-tumor prodrugs : pat. EP-0317956, 1989.
18. De Groot F., Damen E., Scheeren H. Anticancer prodrugs for application in monotherapy: Targeting hypoxia, tumor-associated enzymes, and receptors // Curr. Med. Chem. 2001. V. 8. P. 1093-1122.
19. Fenick D., Taatjes D., Koch T. Doxoform and daunoform: Anthracycline - formaldehyde conjugates toxic to resistant tumor cells // J. Med. Chem. 1997. V. 40. P. 2452-2461.
20. Taatjes D., Fenick D., Koch T. Epidoxoform: A hydrolytically more stable anthracycline - formaldehyde conjugate toxic to resistant tumor cells // J. Med. Chem. 1998. V. 41. P. 1306-1314.
21. Taatjes D., Koch T. Nuclear targeting and retention of anthracycline antitumor drugs in sensitive and resistant tumor cells // Curr. Med. Chem. 2001. V. 8. P. 15-29.
22. Burke P., Koch T. Doxorubicin - formaldehyde conjugate, doxoform: Induction of apoptosis relative to doxorubicin // Anticancer Res. 2001. V. 21. P. 2753-2760.
23. Burke P., Koch T. Design, synthesis and biological evaluation of doxorubicin - formaldehyde conjugates targeted to breast cancer cells // J. Med. Chem. 2004. V. 47. P. 1193-1206.
24. Swift L., Cutts S., Rephaeli A., Nudelman A., Philips D. Activation of adriamycin by the pH-dependent formaldehyde-releasing prodrug hexamethylentetramine // Mol. Cancer Therap. 2003. V. 2. P. 189-198.
25. Ghosh S., Ellerbroek S., Wu Y., Stack M. Tumor-cell mediated proteolysis: Regulatory mechanisms and functional consequences // Fibrin. Proteol. 2000. V. 14. P. 87-97.
26. Lijnen H. Molecular interactions between the plasminogen/plasmin and matrix metalloproteinase // Fibrin. Proteol. 2000. V. 14. P. 175-181.
27. Koblinski J., Ahram M., Sloane B. Unrevealing the role of proteases in cancer // Clin. Chim. Acta. 2000. V. 291. P. 113-135.
28. Zhong Y.-J., Shao L.-H., Li Y. Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy // Int. J. Oncol. 2013. V. 42. P. 373-383.
29. Dubowchik G., Firestone R. Catepsin B-sensitive dipeptide prodrugs. 1. A model study of structural requirements for efficient release of doxorubicin // Bioorg. Med. Chem. Lett. 1998. V. 8. P. 3341-3346.
30. Dubowchik G., Mosure K., Khipe J., Firestone R. Catepsin B-sensitive dipeptide prodrugs. 2. Models of anticancer drugs paclitaxel (TaxolÒ), mitomycin C and doxorubicin // Bioorg. Med. Chem. Lett. 1998. V. 8. P. 3347-3352.
31. Dubowchik G.M., Firestone R.A., Padilla L., Willner D., Hofstead S.J., Mosure K, Knipe J.O., Lasch S.J., Trail P.A. Cathepsin B-labile dipeptide linkers for lysosomal release of doxorubicin from internalizing immunoconjugates: Model studies of enzymatic drug release and antigen-specific in vitro anticancer activity // Bioconjug. Chem. 2002. V. 13. P. 855-869.
32. Shao L.H., Liu S.P., Hou J.X., Zhang Y.H., Peng C.W., Zhong Y.J., Liu X., Liu X.L., Hong Y.P., Firestone R.A., Li Y. Cathepsin B cleavable novel prodrug Ac-Phe-Lys-PABC-ADM enhances efficacy at reduced toxicity in treating gastric cancer peritoneal carcinomatosis: An experimental study // Cancer. 2012. V. 118. P. 2986-2996.
33. Wang Q., Zhong I.J., Yuan J.-P., Shao L.-H., Zhang J., Tang L., Liu S.-P., Hong Y.-P., Firestone R. A., Li Y. Targeting therapy of hepatocellular carcinoma with doxorubicin prodrug PDOX increases anti-metastatic effect and reduces toxicity: A preclinical study // J. Translational Med. 2013. V. 11. P. 192-203.
34. Chakrabarty P., Carl P., Weber M., Katzenellenbogen J. Plasmin-activated prodrugs for cancer chemotherapy. 2. Synthesis and biological activity of peptidyl derivatives of doxorubicin // J. Med. Chem. 1983. V. 26. P. 638-644.
35. Devy L., de Groot F., Blacher S., Hajitou A., Beusker P., Scheeren H., Foidart J., Noel A. Plasmin-activated doxorubicin prodrugs containing a spacer reduce tumor growth and angiogenesis without systemic toxicity // Faser J. 2004. V. 18. P. 565-567.
36. Garsky V., Lumma P., Feng D., Wai J., Ramljt H., Sardana M., Oliff A., Jones R., DeFeo-Jones D., Freidinger R. The synthesis of a prodrug of doxorubicin design to provide reduced systemic toxicity and greater target efficacy // J. Med. Chem. 2001. V. 44. P. 4216-4224.
37. Guang X., McLeod X. Strategies for enzyme/prodrug cancer therapy // Clinical Cancer Res. 2001. V. 7. P. 3314-3324.
38. Tietze L.F., Schmuch K. Prodrugs for targeted tumor therapies: Recent developments in ADEPT, GDEPT and PMT // Curr. Phar. Des. 2011. V. 17. P. 3527-3547.
39. Vrudhula V., Svensson H., Senter P. Cephalosporin derivatives of doxorubicin as prodrugs for activation by monoclonal antibody-beta-lactamase conjugates // J. Med. Chem. 1995. V. 38. P. 1380-1385.
40. Papot S., Tranoy I., Tillequin F., Florent J.-C., Gesson J.-P. Design of selectively activated anticancer produgs: Elimination and cyclization strategies // Curr. Med. Chem. 2002. V. 2. P. 155-185.
41. Leenders R., Damen E., Bijsterveld E., Scheeren H., Houba P., van der Meulen-Muileman I., Boven E., Haisma H. Novel anthracycline-spacer-beta-glucuronide, beta-glucoside, and beta-galactoside prodrugs for application in selective chemotherapy // Biorg. Med. Chem. 1999. V. 7. P. 1597-1560.
42. Bakina E., Wu Z., Robenblum M., Farquhar D. Intensively cytotoxic anthracycline prodrugs: glucuronides // J. Med. Chem. 1997. V. 40. P. 4013-4018.
43. Houba P., Leenders R., Boven E., Scheeren J., Pinedo H., Haisma H. Characterization of novel anthracycline prodrugs activated by human beta-glucuronidase in antibody-directed enzyme prodrug therapy // Biohem. Pharmacol. 1996. V. 52. P. 455-463.
44. Haisma H., van Muijen M., Pinedo H., Boven E. Comparison of two anthracycline based prodrugs for activation by monoclonal antibody-beta-glucuronidase conjugate in the specific treatment of cancer // Cell Biophys. 1994. V. 24-25. P. 185-192.
45. Houba P., Boven E., van der Meulen-MuilemanI., Leenders R., Scheeren J., Pinedo H., Haisma H. Pronounced antitumor efficacy of doxorubicin when given as the prodrug DOX-GA3 in combination with a monoclonal antibody beta-glucuronidase conjugate // Int. J. Cancer. 2001. V. 91. P. 550-554.
46. Houba P., Boven E., Erkelens C., Leenders R., Scheeren J., Pinedo H., Haisma H. The efficacy of the anthracycline prodrug daunorubicin-GA3 in human ovarian cancer xenografts // Br. J. Cancer. 1998. V. 78. P. 1600-1606.
47. Shabat D., Rader C., List B., Lerner R., Barbas III C. Multiple event action of a generic prodrug trigger by antibody catalysis // Proc. Natl. Acad. Sci. 1999. V. 96. P. 6925-6930.
48. Bakina E., Farquhar D. Intensely cytotoxic anthracycline prodrugs: Galactosides // Anticancer Drug Des. 1999. V. 14. P. 507-515.
49. Lu J., Lowe D., Kennedy M., Low P. Folate-target enzyme prodrug cancer therapy utilizing penicillin-V-amidase and a doxorubicin prodrug // J. Drug Target. 1999. V. 7. P. 43-53.
Review
For citations:
Tevyashova A.N. Creation of anthracycline prodrug. Fine Chemical Technologies. 2014;9(6):11-25. (In Russ.)
ISSN 2686-7575 (Online)