Preview

Fine Chemical Technologies

Advanced search

Quantitative determination of 8-methoxypsoralene in mild dosage form by high-performance liquid chromatography

https://doi.org/10.32362/2410-6593-2025-20-3-276-288

EDN: DNWEEB

Abstract

   Objectives. To develop and validate a method for the quantitative determination of 8-methoxypsoralen in a soft dosage form in accordance with the requirements of the State Pharmacopoeia of the Russian Federation, 15th edition, and the Pharmacopoeia of the Eurasian Economic Union.

   Methods. Quantitative determination of 8-methoxypsoralen was performed by high-performance liquid chromatography on a Chromaster 5000 (Hitachi, Japan) with a diode array detector. Chromatography was performed on a Kromasil EternityXT-5-C18, 5 μm, 250 × 4.6 mm column in isocratic mode with a mobile phase of acetonitrile/water in a ratio of 50 : 50 % (v/v). The flow rate was 1.0 mL/min, while the detection wavelength was 250 nm.

   Results. The optimal condition for the extraction of 8-methoxypsoralen was found to be ultrasonic gel extraction at 40 °C for 15 min using acetonitrile. The best peak resolution of 8-methoxypsoralen was achieved during gel analysis at 250 nm using a reversed-phase sorbent with an octadecyl phase (C18) grafted onto silica gel. The acetonitrile/water mixture was used as a mobile phase in a volume ratio of 50 : 50 % to minimize chromatography time while maintaining optimal resolution. From the validation procedures, it was confirmed that the method is specific, linear (R2 > 0.997) and reproducible (relative standard deviation was ≤ 3.0 %). The accuracy of the analytical method was from 98.26 % to 101.02%, while the values of the detection and quantitative determination limits were 0.006 and 0.020 μg/mL, respectively. The developed quantitative determination method demonstrated its stability when varying as the column temperature and flow rate by ±5 %.

   Conclusions. As effectively implemented using the high-performance liquid chromatography method, the method for quantitative determination of 8-methoxypsoralen has a number of advantages over the previously described methods, including reduced analysis time, as well as increased sensitivity and effectiveness, which makes it possible to apply the developed method in assessing the quantitative content of 8-methoxypsoralen in a soft dosage form—gel for the treatment of psoriasis.

About the Authors

A. Alsayed
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Adnan Alsayed, Process Engineer

Department of Biotechnology and Industrial Pharmacy

119454; 78, Vernadskogo pr.; Moscow


Competing Interests:

The authors declare no conflicts of interest



A. A. Prezhedromirskaya
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Anastasiya A. Prezhedromirskaya, Engineer

Department of Biotechnology and Industrial Pharmacy

119454; 78, Vernadskogo pr.; Moscow


Competing Interests:

The authors declare no conflicts of interest



E. A. Shnyak
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Elizaveta A. Shnyak, Can. Sci. (Pharm.), Associate Professor

Department of Biotechnology and Industrial Pharmacy

119454; 78, Vernadskogo pr.; Moscow

ResearсherID H-9402-2013


Competing Interests:

The authors declare no conflicts of interest



S. A. Kedik
MIREA – Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Stanislav A. Kedik, Dr. Sci. (Eng.), Professor, Head of the Department

Department of Biotechnology and Industrial Pharmacy

119454; 78, Vernadskogo pr.; Moscow

Scopus Author ID 7801632547


Competing Interests:

The authors declare no conflicts of interest



References

1. Bishnoi A., Parsad D. Phototherapy for vitiligo : A narrative review on the clinical and molecular aspects, and recent literature. Photoderm. Photoimm. Photomed. 2024;40(3):12968. doi: 10.1111/phpp.12968

2. Molla A. A Comprehensive Review of Phototherapy in Atopic Dermatitis: Mechanisms, Modalities, and Clinical Efficacy. Cureus. 2024;16(3):e56890. doi: 10.7759/cureus.56890

3. Barros N., Sbroglio L., Buffara M., Baka J., Pessoa A., Azulay-Abulafia L. Phototherapy. An. Bras. Dermatol. 2021;96(4):397–407. doi: 10.1016/j.abd.2021.03.001

4. Wełniak A., Białczyk A., Kamińska B., Czajkowski R. Phototherapy in the management of vitiligo – an updated narrative review. Eur. J. Clin. Exp. Med. 2024;22(3):668–676. doi: 10.15584/ejcem.2024.3.26

5. Zengarini C., Baruffaldi G., Piraccini B.M., Bardazzi F., Mussi M., Stancic B., Pileri A. Nb-UVB and PUVA therapy in treating early stages of Mycosis Fungoides: A single-center cross-sectional study. Photoderm. Photoimm. Photomed. 2023;39(5):435–440. doi: 10.1111/phpp.12873

6. Serrano-Pérez J.J., González-Luque R., Merchán M., et al. The family of furocoumarins: Looking for the best photosensitizer for phototherapy. J. Photochem. Photobiol. A: Chem. 2008;199(1):34–41. doi: 10.1016/j.jphotochem.2008.04.013

7. Diekmann J., Theves I., Thom K.A., Gilch P. Tracing the Photoaddition of Pharmaceutical Psoralens to DNA. Molecules. 2020;25(22):5242. doi: 10.3390/molecules25225242

8. Vieyra-Garcia P., Wolf P. A deep dive into UV-based phototherapy: Mechanisms of action and emerging molecular targets in inflammation and cancer. Pharmacol. Ther. 2021;222:107784. doi: 10.1016/j.pharmthera.2020.107784

9. Schalla W., Schaefer H., Kammerau B., Zesch A. Pharmacokinetics of 8-methoxypsoralen (8-MOP) after oral and local application. J. Invest. Dermatol. 1976;66:258–259.

10. Lapolla W., Yentzer B.A., Bagel J., Halvorson C.R., Feldman S.R. A review of phototherapy protocols for psoriasis treatment. J. Am. Acad. Dermatol. 2011;64(5):936–949. doi: 10.1016/j.jaad.2009.12.054

11. Hönigsmann H., Szeimies R., Knobler R. Chapter 238. Photochemotherapy and Photodynamic Therapy. In: Goldsmith L.A., Katz S.I., Gilchrest B.A., Paller A.S., Leffell D.J., Wolff K. (Eds.). Fitzpatrick’s Dermatology in General Medicine. 8<sup>th</sup> Edition. TMcGraw-Hill Companies; 2012.

12. Kassem A.A., Abd El-Alim S.H., Asfour M.H. Enhancement of 8-methoxypsoralen topical delivery via nanosized niosomal vesicles: formulation development, in vitro and in vivo evaluation of skin deposition. Int. J. Pharm. 2017;517(1–2): 256–268. doi: 10.1016/j.ijpharm.2016.12.018

13. Barradas T.N., Senna J.P., Cardoso S.A., de Holanda e Silva K.G., Mansur C.R.E. Formulation characterization and in vitro drug release of hydrogel-thickened nanoemulsions for topical delivery of 8-methoxypsoralen. Mater. Sci. Eng. C Mater. Biol. Appl. 2018;92:245–253. doi: 10.1016/j.msec.2018.06.049

14. Wu J.Y., Li Y.J., Liu T.T., et al. Microemulsions vs chitosan derivative-coated microemulsions for dermal delivery of 8-methoxypsoralen. Int. J. Nanomed. 2019;14:2327–2340. doi: 10.2147/IJN.S191940

15. Pitzanti G., Rosa A., Nieddu M., et al. Transcutol® P containing SLNs for improving 8-methoxypsoralen skin delivery. Pharmaceutics. 2020;12(10):973. doi: 10.3390/pharmaceutics12100973

16. Chew Y.L., Khor M.A., Lim Y.Y. Choices of Chromatographic Methods as Stability Indicating Assays for Pharmaceutical Products : A Review. Heliyon. 2021;7(3):e06553. doi: 10.1016/j.heliyon.2021.e06553

17. Araujo P. Key Aspects of Analytical Method Validation and Linearity Evaluation. J. Chromatogr. B. Anal. Technol. Biomed. Life Sci. 2009;877(23):2224–2234. doi: 10.1016/j.jchromb.2008.09.030

18. Mahmoud D., ElMeshad A., Fadel M., Tawfik A., Ramez S. Photodynamic therapy fortified with topical oleyl alcohol-based transethosomal 8-methoxypsoralen for ameliorating vitiligo: Optimization and clinical study. Int. J. Pharm. 2022;614:121459. doi: 10.1016/j.ijpharm.2022.121459

19. Ageev V.P., Shlyapkina V.I., Kulikov O.A., Zaborovskiy A.V., Tararina L.A. Qualitative and quantitative analysis of the main psoralen derivatives in the juice of Sosnovsky’s hogweed. Farmatsiya = Pharmacy. 2022;71(3):10–17 (in Russ.). doi: 10.29296/25419218-2022-03-02

20. Kulikov O., Ageev V., Brodovskaya E., Shlyapkina V., Petrov P., Zharkov M., Yakobson D., Maev I., Sukhorukov G., Pyataev N. Evaluation of photocytotoxicity liposomal form of furanocoumarins Sosnowsky’s hogweed. Chem. Biol. Interact. 2022;357:109880. doi: 10.1016/j.cbi.2022.109880

21. Ahmed A., Skinley K., Zhang H. Column technology for liquid chromatography. In: Fanali S., Haddad P.R., Poole C., Lloyd D.K. (Eds.). Liquid Chromatography: Fundamentals and Instrumentation. Volume 1 in Handbooks in Separation Science. 2023. P. 37–60. doi: 10.1016/B978-0-323-99968-7.00007-2

22. Bachhav H., Shirsath G., Badhe S., Kurne D., Sonawane S. AI-driven data analysis for identification of impurities in HPLC chromatograms & artificial intelligent system for HPLC column selection and method development. World J. Pharmac. Res. 2024;13(13)238–263.

23. García-Alvarez-Coque M., Torres-Lapasió J., Ruiz-Angel M., Navarro-Huerta J. Secondary chemical equilibria in reversed-phase liquid chromatography. In: Fanali S., Haddad P.R., Poole C., Lloyd D.K. (Eds.). Liquid Chromatography: Fundamentals and Instrumentation. Volume 1 in Handbooks in Separation Science. 2023. P. 121–143. doi: 10.1016/B978-0-323-99968-7.00012-6

24. Žuvela P., Skoczylas M., Jay Liu J., Ba̧czek T., Kaliszan R., Wong M.W., Buszewski B. Column Characterization and Selection Systems in Reversed-Phase High-Performance Liquid Chromatography. Chem. Rev. 2019;119(6):3674–3729. doi: 10.1021/acs.chemrev.8b00246


Review

For citations:


Alsayed A., Prezhedromirskaya A.A., Shnyak E.A., Kedik S.A. Quantitative determination of 8-methoxypsoralene in mild dosage form by high-performance liquid chromatography. Fine Chemical Technologies. 2025;20(3):276-288. https://doi.org/10.32362/2410-6593-2025-20-3-276-288. EDN: DNWEEB

Views: 61


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)