Formation of the microstructure and properties of strontium hexaferrite magnets using powder injection molding
https://doi.org/10.32362/2410-6593-2025-20-3-264-275
EDN: QSOBYJ
Abstract
Objectives. The study set out to investigate the possibility of production strontium hexaferrite permanent magnets using powder injection molding (PIM) technology, which involves casting granules highly filled with ceramic powder. After obtaining the initial granulate based on organic binders and strontium hexaferrite powder, the material was cast in an injection molding machine to create the first intermediate (green) parts, followed by removal of the primary binder to obtain brown parts and final sintering.
Methods. Strontium hexaferrite powder was obtained by the ceramic method. The material underwent grinding in a planetary ball mill to obtain a powder having an average particle size of 13.4 μm, which is considered optimal for the applied PIM technology. Granulate materials, consisting of the obtained strontium hexaferrite powder combined with primary paraffin and secondary polyamide binders, were prepared by manual mixing of the components and used for creation of green parts in injection molding machine. Brown parts obtained following removal of binder from the obtained green parts were characterized by their higher brittleness and open pore structure. Permanent magnets with dimensions of 10 × 10 × 5 mm were obtained following sintering of brown parts in an oxidizing atmosphere.
Results. The more than 70% higher strength of the magnetic properties of the obtained strontium hexaferrite samples compared to isotropic barium hexaferrite-based magnets manufactured in accordance with GOST 24063-80 is due to the presence of pores after sintering.
Conclusions. The possibility of using the ceramic method for producing strontium hexaferrite powder for use in granulate manufacturing was demonstrated. This raw material can then be used to obtain strontium hexaferrite permanent magnets via PIM technology having 80 % density.
Keywords
About the Authors
B. D. ChernyshevRussian Federation
Bogdan D. Chernyshev, Postgraduate Student, Research Scientist
Department of Physical Materials Science; Laboratory of Metallurgical Processes, Giredmet
111524; 2-1, Electrodnaya ul.; 119049; 4-1, Leninskii pr.; Moscow
Scopus Author ID 57219974902
Competing Interests:
The authors declare no conflicts of interest
I. V. Schetinin
Russian Federation
Igor V. Schetinin
119049; 4-1, Leninskii pr.; Moscow
Scopus Author ID 36053563600, ResearcherID A-2270-2012
Competing Interests:
The authors declare no conflicts of interest
References
1. Altafia M., Sharifia E.M., Ghasemi A. The effect of various heat treatments on the magnetic behavior of the Fe-Cr-Co magnetically hard alloy. J. Magn. Magn. Mater. 2020;507:166837. doi: 10.1016/j.jmmm.2020.166837
2. Takagi K., Soda R., Jinno M., Yamaguchi W. Possibility of high-performance Sm<sub>2</sub>Fe<sub>17</sub>N<sub>3</sub> sintered magnets by low-oxygen powder metallurgy process. J. Magn. Magn. Mater. 2020;506:166811. doi: 10.1016/j.jmmm.2020.166811
3. Pandian S., Chandrasekaran V., Markandeyulu G., Iyer K.J.L., Rama Rao K.V.S. Effect of Co, Dy and Ga on the magnetic properties and the microstructure of powder metallurgically processed Nd–Fe–B magnets. J. Magn. Magn. Mater. 2004;364(1–2):295–303. doi: 10.1016/S0925-8388(03)00541-3
4. Luk P.C.-K., Abdulrahem H.A., Xia B. Low-cost high-performance ferrite permanent magnet machines in EV applications : A comprehensive review. eTransportation. 2020;6: 100080–100093. doi: 10.1016/j.etran.2020.100080
5. Najafinezhad A., Abdellahi M., Samandari S.S., Ghayour H., Khandan A. Hydroxyapatite- M-type strontium hexaferrite: A new composite for hyperthermia applications. J. Alloys Compound. 2018;734:290–300. doi: 10.1016/j.jallcom.2017.10.138
6. Kumar S.S., Kumar R.S., Kumari P., Ranga N., Manash A., Kumari R. Structural, ferromagnetic, ferroelectric, and biomedical behaviour of yttrium doped strontium hexaferrite (SrFe<sub>12</sub>−<sub>x</sub>Y<sub>x</sub>O<sub>19</sub>) nano materials, assisted with sol–gel cost effective technique. Physica Scripta. 2023;98(11):115015. doi: 10.1088/1402-4896/acfce7
7. Ostroushko A.A., Gagarin I.D., Kudyukov E.V., et al. Preparation of strontium hexaferrite based materials by solution combustion: the effect of charges arising in precursors and an external magnetic field. Russ. J. Inorg. Chem. 2024;69(2): 141–150. doi: 10.1134/s003602362360301x [Original Russian Text: Ostroushko A.A., Gagarin I.D., Kudyukov E.V., Zhulanova T.Y., Permyakova A.E., Russkikh O.V. Preparation of strontium hexaferrite based materials by solution combustion: the effect of charges arising in precursors and an external magnetic field. Journal of Inorganic Chemistry = Zhurnal neorganicheskoi khimii. 2024;69(2): 143–154 (in Russ.). doi: 10.31857/S0044457X24020013 ]
8. Zaitsev D.D., Kazin P.E., Gravchikova E.A., Trusov L.A., Kushnir S.E., Tretyakova Y.D., Jansen M. Synthesis of magnetic glass ceramics containing fine SrFe<sub>12</sub>O<sub>19</sub> particles. Mendeleev Communications. 2004;14(4):171–173. doi: 10.1070/MC2004v014n04ABEH001971
9. Jing Y., Jia L., Zhenga Y., Zhanga H. Hydrothermal synthesis and competitive growth of flake-like M-type strontium hexaferrite. RSC Adv. 2019;57(9):33388–33394. doi: 10.1039/C9RA06246G
10. Shirmahd H., Aboutalebi M., Seyedein S.H., Adeli M. Synthesis of strontium hexaferrite (SrFe<sub>12</sub>O<sub>19</sub>) by self-propagating high-temperature synthesis (SHS) method and investigation of the effect of milling on morphology and magnetic properties. Ceram. Int. 2024;50(20):38542–38549. doi: 10.1016/j.ceramint.2024.07.222
11. Yu Z., Zhou N., Sun Y., Chen Z., Gong H., Shen B. Preparation of high-performance M-type strontium hexaferrites by ceramic method by optimizing the particle size of raw materials. Solid State Sci. 2023;144:107309. doi: 10.1016/j.solidstatesciences.2023.107309
12. Green M.L. Powder metallurgy processing of CrCoFe permanent magnet alloys containing 5–25 wt. % Co. J. Appl. Phys. 1982;53(3):2398–2400. doi: 10.1063/1.330824
13. Shatsov A.A. Powder materials of the Fe – Cr – Co system. Met. Sci. Heat Treat. 2004;46(3–4):152–155. doi: 10.1023/B:MSAT.0000036668.48856.02
14. Kaneko H., Sherwood R.C., Wong C.C. New Ductile Permanent Magnet of Fe‐Cr‐Co System. AIP Conf. Proc. 1972;5(1):1088–1092. doi: 10.1063/1.2953814
15. Volegov A.S., Andreev S.V., Selezneva N.V., Ryzhikhin I.A., Kudrevatykh N.V., Mädler L., Okulov I.V. Additive manufacturing of heavy rare earth free high-coercivity permanent magnets. Acta Materialia. 2020;188:733–739. doi: 10.1016/j.actamat.2020.02.058
16. Shumkin S.S., Sitnov V.V., Kamynin A.V., Chernyshov B.D., Semenov M.Y., Nikolaichik V.I. Composition and Operating Properties of Hard Magnetic Materials Based on Alloys of the Sm – Co – Cu – Fe – Zr System Obtained with the Use of Recoverable Resources. Met. Sci. Heat Treat. 2022;63: 479–485. doi: 10.1007/s11041-022-00715-y
17. Parkhomenko A.V., Amosov A.P., Samboruk A.R. Science intensive technology of metallic parts powder injection molding (MIM technology). Naukoemkie tekhnologii v mashinostroenii = High-Tech Technologies in Mechanical Engineering. 2012;12(18):8–13 (in Russ.).
18. Baidarov S.Yu., Kamynin A.V., Kraposhin V.S., Chernyshev D.L. Problems of development of MIM technology in Russia as applied to production of permanent magnets. Met. Sci. Heat Treat. 2020;61(9–10):559–562. doi: 10.1007/s11041-020-00461-z [Original Russian Text: Baidarov S.Yu., Kamynin A.V., Kraposhin V.S., Chernyshev D.L. Problems of development of MIM technology in Russia as applied to production of permanent magnets. Metallovedenie i termicheskaya obrabotka metallov 2019;9(771):34–37 (in Russ.).]
19. Malas A., Isakov D., Couling K., Gibbons G.J. Fabrication of High Permittivity Resin Composite for Vat Photopolymerization 3D Printing: Morphology, Thermal, Dynamic Mechanical and Dielectric Properties. Materials. 2019;12(23):3818–3833. doi: 10.3390/ma12233818
20. Kostin D.V., Amosov A.P., Samboruk A.R., Chernyshev B.D. Influence of metal powder production method on microstructure and fluidity of magnetically alloy granulate. Naukoemkie tekhnologii v mashinostroenii = High-Tech Technologies in Mechanical Engineering. 2021;9(123):3–7 (in Russ.).
21. Kostishin V.G., Andreev V.G., Chitanov D.N., et al. Analysis of the effect of crushing of strontium hexaferrite powders in a vibratory mill on the properties of magnets on their basis. Tech. Phys. 2015;60(8): 1194–1197. doi: 10.1134/S1063784215080149 [Original Russian Text: Kostishin V.G., Andreev V.G., Chitanov D.N., Timofeev A.V., Adamtsov A.Yu., Alekseev A.A. Study of the influence of grinding modes of strontium hexaferrite powders in a vibration mill on the properties of magnets based on them. Zhurnal tekhnicheskoi fiziki. 2015;8:91–93 (in Russ.).]
22. Ermakova L.V., Kuznetsova D.E., Poplevin D.S., et al. Effect of Acrylate Monomer on the Characteristics of Photopolymerizable Suspensions for Obtaining Ceramic from Stabilized ZrO<sub>2</sub>. Glass Ceram. 2023;79:395–400. doi: 10.1007/s10717-023-00520-w [Original Russian Text: Ermakova L.V., Kuznetsova D.E., Poplevin D.S., Smyslova V.G., Karpyuk P.V., Sokolov P.S., Dosovitskii G.A., Chizhevskaya S.V. Effect of Acrylate Monomer on the Characteristics of Photopolymerizable Suspensions for Obtaining Ceramic from Stabilized ZrO<sub>2</sub>. Steklo i keramika. 2022;95(10):03–10 (in Russ). doi: 10.14489/glc.2022.10.pp.003-010 ]
23. Hostaša J., Schwentenwein M., Toci G., Esposito L., Brouczek D., Piancastelli A., Pirri A., Patrizi B., Vannini M., Biasini V. Transparent laser ceramics by stereolithography. Scr. Mater. 2020;187: 194–196. doi: 10.1016/j.scriptamat.2020.06.006
24. Rolere S., Soupremanien U., Bohnke M., Dalmasso M., Delafosse C., Laucournet R. New insights on the porous network created during solvent debinding of powder injection-molded (PIM) parts, and its influence on the thermal debinding efficiency. J. Mater. Process. Technol. 2021;295: 117163–117173. doi: 10.1016/j.jmatprotec.2021.117163
25. Basir A., Sulong A.B., Jamadon N.H., Muhamad N. Feedstock properties and debinding mechanism of yttria-stabilized zirconia/ stainless steel 17-4PH micro-components fabricated via two-component micro-powder injection molding process. Ceram. Int. 2021;47(14):20476–20485. doi: 10.1016/j.ceramint.2021.04.057
26. Maryisheva M.A., Aleksanyan I.Yu., Nugmanov A.H.-H., Titova L.M., Maksimenko Y.A. Kinetics of technical paraffin dissolution in hexane and the specific heat of vaporization of a hexane-paraffin composition in the production of food paraffin. Scientific journal NRU ITMO Series “Processes and Food Production Equipment.” 2022;1:12–21. doi: 10.17586/2310-1164-2022-15-1-12-21
27. García-Martín E., Granados-Miralles C., Ruiz-Gómez S., Pérez L., Campo A., Guzmán-Mínguez J.C., Fernández C.J., Quesada A., Fernández J.F., Serrano A. Dense strontium hexaferrite-based permanent magnet composites assisted by cold sintering process. J. Alloys Compound. 2022;917:165531. doi: 10.48550/arXiv.2309.16038
28. Benzing J., Hrabe N., Quinn T., White R., Rentz R., Ahlfors M. Hot isostatic pressing (HIP) to achieve isotropic microstructure and retain as-built strength in an additive manufacturing titanium alloy (Ti-6Al-4V). Mater. Lett. 2019;257: 126690–126695. doi: 10.1016/j.matlet.2019.126690
Review
For citations:
Chernyshev B.D., Schetinin I.V. Formation of the microstructure and properties of strontium hexaferrite magnets using powder injection molding. Fine Chemical Technologies. 2025;20(3):264-275. https://doi.org/10.32362/2410-6593-2025-20-3-264-275. EDN: QSOBYJ