Use of ion-exchange resins for purification of L-lactic acid-containing Rhizopus oryzae fermentation broth
https://doi.org/10.32362/2410-6593-2025-20-3-223-236
EDN: HJIVQS
Abstract
Objectives. The work set out to describe conditions for the purification of a model fermentation broth for cultivating the lactic acid-containing micromycete Rhizopus oryzae from impurities of inorganic salts using ion-exchange resins under dynamic conditions.
Methods. The solutions collected for analysis were examined using precipitation titration to determine the concentration of chlorides along with a qualitative reaction with Nessler’s reagent to ascertain the presence of ammonium ions. The concentration of lactic acid was evaluated spectrophotometrically using iron(III) chloride. The total nitrogen content was determined by high-temperature catalytic combustion on a Formacs HT TOC/TN Analyzer (Netherlands). The content of trace elements and macroelements in the samples was determined using an iCAP 6300 Duo inductively coupled plasma emission spectrometer (United Kingdom).
Results. Purification of the model broth under the described conditions was carried out by successive filtration through the cation exchanger KU-2-8 in the H-form and subsequently through a mixture of weakly basic A847 and strongly basic AV-17-8 anion exchangers in the OH-form taken in a one-to-one ratio. The breakthrough of impurity ions into the solution was shown to occur after passing 30-fold and 10-fold volumes of the model broth relative to the volume of the cation-exchange and anion-exchange resins, respectively. The dynamic exchange capacity prior to breakthrough was determined as follows: 0.35 mmol-eq/cm3 for the anion-exchange column and 1.61 mmol-eq/cm3 for the cation-exchange column. The following parameters were defined as column regeneration modes: 3-fold excess of 2 M H2SO4, 10-fold excess of distilled H2O for cation exchange; for anion exchange, 3-fold excess of 2 M NaOH and 20-fold excess of H2O.
Conclusions. The conducted studies showed that purification of the model fermentation broth of Rhizopus oryzae can be successfully implemented using ion-exchange resins. The model fermentation broth passing successively through cation-exchange and anion-exchange columns was shown to be purified from impurities of mineral salts while maintaining the concentration of lactic acid.
Keywords
About the Authors
E. V. PikurovaRussian Federation
Elena V. Pikurova, Cand. Sci. (Chem.), Researcher
Laboratory of High-Molecular Compounds
660037; 31, pr. Imeni Gazety Krasnoyarskii Rabochii; Krasnoyarsk
Scopus Author ID 56016899300, ResearcherID D-5117-2014
Competing Interests:
The authors declare no conflict of interest
A. N. Boyandin
Russian Federation
Anatoly N. Boyandin, Cand. Sci. (Biol.), Senior Researcher
Laboratory of High-Molecular Compounds
660037; 31, pr. Imeni Gazety Krasnoyarskii Rabochii; Krasnoyarsk
Scopus Author ID 6507584996, ResearcherID H-1641-2016
Competing Interests:
The authors declare no conflict of interest
D. R. Serebryakov
Russian Federation
Dmitry R. Serebryakov, Postgraduate Student, Engineer
Laboratory of High-Molecular Compounds
660037; 31, pr. Imeni Gazety Krasnoyarskii Rabochii; Krasnoyarsk
Competing Interests:
The authors declare no conflict of interest
N. L. Ertiletskaya
Russian Federation
Natalya L. Ertiletskaya, Postgraduate Student, Junior Researcher
Laboratory of High-Molecular Compounds
660037; 31, pr. Imeni Gazety Krasnoyarskii Rabochii; Krasnoyarsk
Scopus Author ID 57781636600
Competing Interests:
The authors declare no conflict of interest
O. V. Anishchenko
Russian Federation
Olesya V. Anishchenko, Cand. Sci. (Biol.), Head of the Laboratory
Analytical Laboratory
660036; 50, Akademgorodok; Krasnoyarsk
Scopus Author ID 6507556442
Competing Interests:
The authors declare no conflict of interest
A. A. Sukhanova
Russian Federation
Anna A. Sukhanova, Cand. Sci. (Biol.), Senior Researcher
Laboratory of High-Molecular Compounds
660037; (31, pr. Imeni Gazety Krasnoyarskii Rabochii; Krasnoyarsk
Scopus Author ID 57292697300
Competing Interests:
The authors declare no conflict of interest
References
1. Din N.A.S., Lim S.J., Maskat M.Y., et al. Lactic acid separation and recovery from fermentation broth by ion-exchange resin : A review. Bioresour. Bioprocess. 2021;8(1):31. doi: 10.1186/s40643-021-00384-4
2. Wee Y.J., Kim J.N., Ryu H.W. Biotechnological production of lactic acid and its recent applications. Food Technol. Biotechnol. 2006;44(2):163–173.
3. Li C., Gao M., Zhu W., et al. Recent advances in the separation and purification of lactic acid from fermentation broth. Process Biochem. 2021;104:142–151. doi: 10.1016/j.procbio.2021.03.011
4. Ehsani M., Khodabakhshi K., Asgari M. Lactide synthesis optimization: investigation of the temperature, catalyst and pressure effects. e-Polymers. 2014;14(5):353–361. doi: 10.1515/epoly-2014-0055
5. Bahati D., Bricha M., Semlali A., El Mabrouk K. Preparation and characterization of poly (lactic acid)-chitosan blend fibrous electrospun membrane loaded with bioactive glass nanoparticles for guided bone/tissue regeneration. Mater. Chem. Phys. 2024;323:129637. doi: 10.1016/j.matchemphys.2024.129637
6. Nair L.S., Laurencin C.T. Biodegradable polymers as biomaterials. Prog. Polym. Sci. 2007;32(8–9):762–798. doi: 10.1016/j.progpolymsci.2007.05.017
7. Auras R., Harte B., Selke S. An Overview of Polylactides as Packaging Materials. Macromol. Biosci. 2004;4(9):835–864. doi: 10.1002/mabi.200400043
8. Jin B., Huang L.P., Lant P. Rhizopus arrhizus – a producer for simultaneous saccharification and fermentation of starch waste materials to L-(+)-lactic acid. Biotechnol. Lett. 2003;25: 1983–1987. doi: 10.1023/B:BILE.0000004389.53388.d0
9. Nyanikova G.G., Minina A., Belyaeva A.D. Influence of substratum composition on growth of fungus Rhizopus oryzae. Izvestiya Sankt Peterburgskogo gosudarstvennogo tekhnologicheskogo instituta (tekhnicheskogo universiteta) = Bulletin of the St. Petersburg State Institute of Technology (Technical University). 2018;45(71):82–86 (in Russ.).
10. Lee H.D., Lee M.Y., Hwang Y.S., et al. Separation and Purification of Lactic Acid from Fermentation Broth Using Membrane-Integrated Separation Processes. Ind. Eng. Chem. Res. 2017;56(29):8301–8310. doi: 10.1021/acs.iecr.7b02011
11. Soto M.L., Moure A., Domínguez H., Parajó J.K. Recovery, concentration and purification of phenolic compounds by adsorption : A review. J. Food Eng. 2011;105(1):1–27. doi: 10.1016/j.jfoodeng.2011.02.010
12. Selitskii G.A., Galkin Yu.A. Purification of wastewater from heavy metal ions by sodium cation exchange. Metallurgiya i mashinostroenie. 2008;11(2):5–7 (in Russ.).
13. Saikova C.V., Pashkov G.L., Panteleeva M.V. Reaktsionno-ionoobmennye protsessy izvlecheniya tsvetnykh metallov i sinteza dispersnykh materialov (Reaction-Ion-Exchange Processes of Non-Ferrous Metals Extraction and Synthesis of Dispersed Materials). Krasnoyarsk; 2018. 198 p. (in Russ.). ISBN 978-5-7638-3856-5
14. Di N.F., Lancia A. Recovery of Tungstate from Aqueous Solutions by Ion Exchange. Ind. Eng. Chem. Res. 2007;46(21):6777–6782. doi: 10.1021/ie061691w
15. Kabay N., Demircioğlu M., Yayli S. Günay E., Yüksel M., Sağlam M., Streat M. Recovery of Uranium from Phosphoric Acid Solutions Using Chelating Ion-Exchange Resins. Ind. Eng. Chem. Res. 1998;37(5):1983–1990. doi: 10.1021/ie970518k
16. Elabd A.A., Zidan W.I., Abo-Aly M.M., et al. Uranyl ions adsorption by novel metal hydroxides loaded Amberlite IR120. J. Environ. Radioact. 2014;134:99–108. doi: 10.1016/j.jenvrad.2014.02.008
17. Lebedev K.B. (Ed.). Ionity v tsvetnoi metallurgii (Ionites in Non-Ferrous Metallurgy). Moscow: Metallurgiya; 1975. 352 p. (in Russ.).
18. Vulikh A.I. Ionoobmennyi sintez (Ion-Exchange Synthesis). Moscow: Khimiya; 1973. 231 p. (in Russ.).
19. Zhang Y., Qian Z., Liu P., Liu L., Zheng Z., Ouyang J. Efficient in situ separation and production of L-lactic acid by Bacillus coagulans using weak basic anion-exchange resin. Bioprocess Biosyst. Eng. 2018;41(2):205–212. doi: 10.1007/s00449-017-1858-z
20. Rampai T., Thitiprasert S., Boonkong W., Kodama K., Tolieng V., Thongchul N. Improved lactic acid productivity by simultaneous recovery during fermentation using resin exchanger. Asia-Pacific J. Sci. Technol. 2016;21(2):193–199. doi: 10.14456/kkurj.2016.11
21. Pradhan N., Rene E., Lens P., Dipasquale L., D’Ippolito G., Fontana A., Panico A. Adsorption behaviour of lactic acid on granular activated carbon and anionic resins: thermodynamics, isotherms and kinetic studies. Energies. 2017;10(5):665. doi: 10.3390/en10050665
22. Boonmee M., Cotano O., Amnuaypanich S., Grisadanurak N. Improved lactic acid production by in situ removal of lactic acid during fermentation and a proposed scheme for its recovery. Arab. J. Sci. Eng. 2016;41(6):2067–2075. doi: 10.1007/s13369-015-1824-5
23. González M.I., Álvarez S., Riera F.A., et al. Purification of Lactic Acid from Fermentation Broths by Ion-Exchange Resins. Ind. Eng. Chem. Res. 2006;45(9):3243–3247. doi: 10.1021/ie051263a
24. Borshchevskaya L.N., Gordeeva T.L., Kalinina A.N., et al. Spectrophotometric determination of lactic acid. J. Anal. Chem. 2016;71(8):755–758. doi: 10.1134/S1061934816080037 [Original Russian Text: Borshchevskaya L.N., Gordeeva T.L., Kalinina A.N., Sineokii S.P. Spectrophotometric determination of lactic acid. Zhurnal Analiticheskoi Khimii. 2016;71(8):787–790 (in Russ.). doi: 10.7868/S004445021608003X ]
25. Anishchenko O.V., Tolomeev A.P., Ivanova E.A., Drobotov A.V., Kolmakova A.A., Zuev I.V., Gribovskaya I.V. Accumulation of elements by submerged (Stuckenia pectinate (L.) Börner) and emergent (Phragmites australis (Cav.) Trin. ex Steud.) macrophytes under different salinity levels. Plant Physiol. Biochem. 2020;154:328–340. doi: 10.1016/j.plaphy.2020.05.019
26. Kokotov Yu.A. Ionity i ionnyi obmen (Ionites and Ion Exchange). Leningrad: Khimiya; 1980. 150 p. (in Russ.).
Review
For citations:
Pikurova E.V., Boyandin A.N., Serebryakov D.R., Ertiletskaya N.L., Anishchenko O.V., Sukhanova A.A. Use of ion-exchange resins for purification of L-lactic acid-containing Rhizopus oryzae fermentation broth. Fine Chemical Technologies. 2025;20(3):223-236. https://doi.org/10.32362/2410-6593-2025-20-3-223-236. EDN: HJIVQS