Gas permeability of films based on low-density polyethylene–ethylene-vinyl acetate blends with cellulosic fillers
https://doi.org/10.32362/2410-6593-2025-20-2-146-155
EDN: DTICXX
Abstract
Objectives. The work set out to characterize the gas permeability properties of biocomposite materials based on synthetic polymers and natural fillers.
Methods. The studied materials were blends of low-density polyethylene (LDPE) and ethylene–vinyl acetate (EVA) copolymer, with different LDPE/EVA ratios, as well as biocomposites based on these polymers with natural cellulosic fillers (wood flour (WF) and microcrystalline cellulose (MCC)). The coefficients of gas permeability, diffusion, and oxygen solubility were determined in the obtained composites using the manometric method. The dependence of the diffusion properties of LDPE/EVA blends and biocomposites made of LDPE/EVA/natural filler on the EVA content in the composite was considered.
Results. We demonstrated that, as the EVA content in the polymer matrix increases, so also do its solubility and coefficients of gas permeability and oxygen diffusion. The variation in the diffusion characteristics of biocomposite materials obtained using solid filler particles that differ significantly in shape is characterized. The presented interpretation of the obtained results explains the decrease in diffusion in terms of increased rigidity of biocomposites.
Conclusions. An increase in the EVA content in blends with LDPE leads to a linear increase in the gas permeability for oxygen, as well as enhanced diffusion and solubility of oxygen in the film. Upon adding a cellulosic filler, the gas permeability of the composites drops almost twofold. The decrease in gas permeability is associated with the morphology of the filler particles increasing the path of gas molecules. Oxygen solubility for composites with MCC and WF is not the same due to the shape of the filler particles. Rough and more elongated WF particles form a more rigid, less permeable structure of the biocomposite than smooth spherical MCC particles.
Keywords
About the Authors
P. G. ShelenkovRussian Federation
Pavel G. Shelenkov, Postgraduate Student; Higher Engineering School “New Materials and Technologies”
Scopus Author ID 57202800500
4, Kosygina ul., Moscow, 119334
36, Stremyanniy per., Moscow, 115054
Competing Interests:
The authors declare no conflicts of interest
P. V. Pantyukhov
Russian Federation
Petr V. Pantyukhov, Cand. Sci. (Chem.), Senior Researcher; Higher Engineering School “New Materials and Technologies”
Scopus Author ID 55368433100, ResearcherID I-9817-2014
4, Kosygina ul., Moscow, 119334
36, Stremyanniy per., Moscow, 115054
Competing Interests:
The authors declare no conflicts of interest
A. A. Olkhov
Russian Federation
Anatoly A. Olkhov, Dr. Sci. (Chem.), Senior Researcher; Leading Researcher, Scientific Laboratory “Advanced Composite Materials and Technologies”
Scopus Author ID 6602363287, ResearcherID F-9265-2017
4, Kosygina ul., Moscow, 119334
36, Stremyanniy per., Moscow, 115054
Competing Interests:
The authors declare no conflicts of interest
A. A. Popov
Russian Federation
Anatoly A. Popov, Dr. Sci. (Chem.), Professor, Deputy Director; Head of the Basic Department of Chemistry of Innovative Materials and Technologies, Plekhanov Russian University of Economics
Scopus Author ID 7402986626, ResearcherID I-9835-2014
4, Kosygina ul., Moscow, 119334
36, Stremyanniy per., Moscow, 115054
Competing Interests:
The authors declare no conflicts of interest
References
1. Chamas A., Moon H., Zheng J., Qiu Y., Tabassum T., Jang J.H., Abu-Omar M., Scott S.L., Suh S. Degradation Rates of Plastics in the Environment. ACS Sustainable Chem. Eng. 2020;8(9): 3494–3511. https://doi.org/10.1021/acssuschemeng.9b06635
2. WangY., FengG., LinN., Lan H., LiQ., YaoD., Tang J. A review of degradation and life prediction of polyethylene. Appl. Sci. 2023;13(5):3045. https://doi.org/10.3390/app13053045
3. Ali S.S., Elsamahy T., Al-Tohamy R., Zhu D., Mahmoud Y.A.G., Koutra E., Metwally M.A., Kornaros M., Sun J. Plastic wastes biodegradation: Mechanisms, challenges and future prospect. Sci. Total Environ. 2021;780:146590. https://doi.org/10.1016/j.scitotenv.2021.146590
4. Tiago G.A.O., Mariquito A., Martins-Dias S., Marques A.С. The problem of polyethylene waste – recent attempts for its mitigation. Sci. Total Environ. 2023;892:164629. https://doi.org/10.1016/j.scitotenv.2023.164629
5. Kantelberg R., Achenbach T., Kirch A., Reineke S. In-plane oxygen diffusion measurements in polymer films using timeresolved imaging of programmable luminescent tags. Sci. Rep. 2024;14(1):5826. https://doi.org/10.1038/s41598-024-56237-5
6. Zaikov G.E. (Ed.). Polimernye plenki (Polymer Films): transl. from Engl. St. Petersburg: Professiya; 2005. 352 p. (in Russ.).
7. ExamaA., ArulJ., Lencki R.W., Lee L.Z., Toupin C. Suitability of plastic films for modified atmosphere packaging of fruits and vegetables. J. Food Sci. 1993;58(6):1365–1370. https://doi.org/10.1111/j.1365-2621.1993.tb06184.x
8. Ahvenainen R. Active and inteligente packaging: An introduction. In: Ahvenainen R. (Ed.). Novel Food Packaging Technology. Cambridge: Published in CRC Press, Boca, Raton, Boston, New York, Washinton, DC and Published by Woodhead Publishing, Ltd.; 2003. P. 5–21. http://doi.org/10.1533/9781855737020.1.5
9. YasudaH., ClarkH.G., StannettV. Permeability. In: Encyclopedia Polymer Science and Technology. 1969;9:794–807.
10. Khaliq M.H., Gomes R., Fernandes C., Nóbrega J., Carneiro O.S., Ferrás L.L. On the use of high viscosity polymers in the fused filament fabrication process. Rapid Prototyping J. 2017;23(4):727. https://doi.org/10.1108/rpj-02-2016-0027
11. Kozlov P.V., Braginskii G.I. Khimiya i tekhnologiya polimernykh plenok (Chemistry and Technology of Polymer Films). Moscow: Iskusstvo; 1965. 624 p. (in Russ.).
12. Barashkov N.N. Polimernye kompozity: poluchenie, svoistva, primenenie (Polymer Composites: Preparation, Properties, Application). Moscow: Nauka; 1984. 129 p. (in Russ.).
13. Blanchard R., Ogunsona E.O., Hojabr S., Berry R., Mekonnen T.H. Synergistic cross-linking and reinforcing enhancement of rubber latex with cellulose nanocrystals for glove applications. ACS Appl. Polym. Mater. 2020;2(2): 887–898. https://doi.org/10.1021/acsapm.9b01117
14. Varghese S.A., Pulikkalparambil H., Rangappa S.M., Siengchin S., Parameswaranpillai J. Novel biodegradable polymer films based on poly(3-hydroxybutyrate-co-3- hydroxyvalerate) and Ceiba pentandra natural fibers for packaging applications. Food Packaging and Shelf Life. 2020;25(5):100538. https://doi.org/10.1016/j.fpsl.2020.100538
15. Bordyugova S. S., Belyanskaya E. V., Zaitseva A. A., Pashchenko O. A., Konovalova O. V. Indicator of gas permeability of biodegradable films based on gelatin. Nauchnyi vestnik Luganskogo gosudarstvennogo agrarnogo universiteta = Scientific Bulletin of Lugansk State Agrarian University. 2021;4(13):84–90 (in Russ.).
16. Kuzmin A., Ashori A., Pantyukhov P., Zhou Y., Guan L., Hu C. Mechanical, thermal, and water absorption properties of HDPE/ barley straw composites incorporating waste rubber. Sci. Rep. 2024;14:25232. https://doi.org/10.1038/s41598-024-76337-6
17. Kristine V.A. Polysaccharides for biodegradable packaging materials: past, present, and future (Brief Review). Polymers. 2023;15(2):451. https://doi.org/10.3390/polym15020451
18. Schneider M., Finimundi N., Podzorova M., Pantyukhov P., Poletto M. Assessment of morphological, physical, thermal, and thermal conductivity properties of polypropylene/ lignosulfonate blends. Materials. 2021;14(3):543. https://doi.org/10.3390/ma14030543
19. ShelenkovP.G., PantyukhovP.V., AleshinskayaS.V., MaltsevA.A., AbushakhmanovaZ.R., PopovA.A., Saavedra-AriasJ.J., PolettoM. Thermal stability of highly filled cellulosic biocomposites based on ethylene-vinyl acetate copolymer. Polymers. 2024;16(15):2103. https://doi.org/10.3390/polym16152103
20. Pantyukhov P.V., Khvatov A.V., Monakhova T.V., Popov A.A., Kolesnikova N.N. The Degradation of Materials Based on Low-Density Polyethylene and Natural Fillers. Int. Polym. Sci. Technol. 2018;40(5):55–58. https://doi.org/10.1177/0307174X1304000511 [Original Russian Text: Pantyukhov P.V., Khvatov A.V., Monakhova T.V., Popov A.A., Kolesnikova N.N. Destruction of the materials made of PELD and natural fillers. Plasticheskie Massy. 2012;2:40–42 (in Russ.). https://www.elibrary.ru/item.asp?id=17743233 ]
21. Shabarin A.A., Shabarin A.A., Vodiakov V.N., Kuzmin A.M. Biodegradable composite materials based on polyolefins and beer pellets. Vestnik Tekhnologicheskogo universiteta = Herald of Technological University. 2016;19(17):67–70 (in Russ.).
22. LukaninaYu.K., PantyukhovP.V., KhvatovA.V., KorolevaA.V., Kolesnikova N.N., Likhachev A.N., Popov A.A. Bio-damage of materials based on polyethylene and wood flour. Vse materialy. Entsiklopedicheskii spravochnik = All Materials. Encyclopedic Reference Manual. 2014;1:2–7 (in Russ.).
23. Rogovina S.Z., Lomakin S.M., Aleksanyan K.V., et al. The structure, properties, and thermal destruction of biodegradable blends of cellulose and ethylcellulose with synthetic polymers. Russ. J. Phys. Chem. B. 2012;6:416–424. https:// doi.org/10.1134/S1990793112060048 [Original Russian Text: Rogovina S.Z., Lomakin S.M., Aleksanyan K.V., Prut E.V. The structure, properties, and thermal destruction of biodegradable blends of cellulose and ethylcellulose with synthetic polymers. Khimicheskaya Fizika. 2012;31(6):54–62 (in Russ.).]
24. Shelenkov P.G., Pantyukhov P.V., Poletto M., Popov A.A. Influence of vinyl acetate content and melt flow index of ethylenevinyl acetate copolymer on physico-mechanical and physicochemical properties of highly filled biocomposites. Polymers. 2023;15(12):2639. https://doi.org/10.3390/polym15122639
25. ShelenkovP.G., PantyukhovP.V., PopovA.A. Mechanical properties of superconcentrates based on ethylene-vinyl acetate copolymer and microcrystalline cellulose. Mater. Sci. Forum. 2020;992:306–310. https://doi.org/10.4028/www.scientific.net/MSF.992.306
26. Shelenkov P.G., Pantyukhov P.V., Popov A.A. Highly filled biocomposites based on ethylene-vinyl acetate copolymer and wood flour. IOPConf. Ser.: Mater. Sci. Eng. 2018;369(1):012043. https://doi.org/10.1088/1757-899X/369/1/012043
27. Pantyukhov P., Zykova A., Popov A. Ethylene-octene copolymer-wood flour/oil flax straw biocomposites: Effect of filler type and content on mechanical properties. Polym. Eng. Sci. 2017;57(7):756–763. https://doi.org/10.1002/pen.24626
28. Sorz J., Hietz P. Gas diffusion through wood: implications for oxygen supply. Trees. 2006;20:34–41. https://doi.org/10.1007/s00468-005-0010-x
29. Alamo-Sanza del M., Cárcel L.M., NevaresI. Characterization of the oxygen transmission rate of oak wood species used in cooperage. J. Agric. Food Chem. 2017;65(3):648–655. https://doi.org/10.1021/acs.jafc.6b05188
30. ZykovaA.K., Pantyukhov P.V., KolesnikovaN.N., MonakhovaT.V., Popov A.A. Influence of filler particle size on physical properties and biodegradation of biocomposites based on low-density polyethylene and lignocellulosic fillers. J. Polym. Environ. 2018;26:1343–1354. https://doi.org/10.1007/s10924-017-1039-9.
Supplementary files
|
1. Scanning electron microscopy microphotographs of wood flour particles | |
Subject | ||
Type | Исследовательские инструменты | |
View
(66KB)
|
Indexing metadata ▾ |
- The gas permeability properties of biocomposite materials based on synthetic polymers and natural fillers were characterized.
- As the ethylene–vinyl acetate copolymer content in the polymer matrix increases, so also do its solubility and coefficients of gas permeability and oxygen diffusion.
- The variation in the diffusion characteristics of biocomposite materials obtained using solid filler particles that differ significantly in shape is characterized.
- The presented interpretation of the obtained results explains the decrease in diffusion in terms of increased rigidity of biocomposites.
Review
For citations:
Shelenkov P.G., Pantyukhov P.V., Olkhov A.A., Popov A.A. Gas permeability of films based on low-density polyethylene–ethylene-vinyl acetate blends with cellulosic fillers. Fine Chemical Technologies. 2025;20(2):146-155. https://doi.org/10.32362/2410-6593-2025-20-2-146-155. EDN: DTICXX