New nanostructured carriers for cellulase immobilization
https://doi.org/10.32362/2410-6593-2025-20-2-119-136
EDN: LWMGXO
Abstract
Objectives. Cellulase is a multienzyme complex that breaks down cellulose contained in plant cell walls. Cellulase consists of three types of enzymes: endoglucanase, exoglucanase, and β-glucosidase, each of which is involved in the destruction of certain chemical bonds in cellulose. Nanobiocatalysts based on cellulase immobilized on nanostructured carriers are used for catalytic hydrolysis of biomass waste, as well as in the food industry and for environmental protection. This article reviews scientific developments in the immobilization of cellulase on nanostructured carriers.
Methods. The article analyzes scientific papers published over the past five years that concerned the main aspects of immobilization of cellulase, an enzyme for processing cellulose biomass waste, on nanostructured carriers. The article examines methods of cellulase immobilization, the morphology of nanostructured carriers, and the factors affecting the enzyme activity and allowing one to achieve maximum conversion of cellulose-containing waste of plant origin.
Results. Nanostructured carriers have a large surface area, providing high immobilization efficiency, and also create a favorable environment for activating cellulase and increasing its stability. This allows one to create nanobiocatalysts for efficient conversion of cellulose substrate. The conducted analysis of the latest trends shows that positive changes have occurred in immobilization methods and carrier compositions over the past five years. The article describes such nanostructured carriers as graphene layers, polymer nanoparticles, nanohydrogels, nanofibers, silica nanoparticles, hierarchical porous materials, and magnetic nanoparticles.
Conclusions. Magnetically separable carriers increase the reliability of the biocatalyst and facilitate biocatalytic processes. The use of magnetic nanoparticles is especially advantageous due to their easy separation and the possibility of extracting the nanobiocatalyst for reuse.
Keywords
About the Authors
A. M. SulmanRussian Federation
Alexandrina M. Sulman, Cand. Sci. (Chem.), Associate Professor, Department of Biotechnology, Chemistry and Standardization
Scopus Author ID 57147926100, ResearcherID ABC-4215-2020
22, Afanasiya Nikitina nab., Tver, 170026
Competing Interests:
The authors declare no conflicts of interest
V. P. Molchanov
Russian Federation
Vladimir P. Molchanov, Dr. Sci. (Eng.), Professor, Department of Biotechnology, Chemistry and Standardization
Scopus Author ID 57146992100, ResearcherID U-3736-2019
22, Afanasiya Nikitina nab., Tver, 170026
Competing Interests:
The authors declare no conflicts of interest
D. V. Balakshina
Russian Federation
Daria V. Balakshina, Master Student
22, Afanasiya Nikitina nab., Tver, 170026
Competing Interests:
The authors declare no conflicts of interest
O. V. Grebennikova
Russian Federation
Olga V. Grebennikova, Cand. Sci. (Chem.), Associate Professor, Department of Biotechnology, Chemistry and Standardization
6Scopus Author ID 57219406141, ResearcherID A-9397-2014
22, Afanasiya Nikitina nab., Tver, 17002
Competing Interests:
The authors declare no conflicts of interest
V. G. Matveeva
Russian Federation
Valentina G. Matveeva, Dr. Sci. (Chem.), Professor, Department of Biotechnology, Chemistry and Standardization
Scopus Author ID 7004479390, ResearcherID B-1120-2014
22, Afanasiya Nikitina nab., Tver, 170026
Competing Interests:
The authors declare no conflicts of interest
References
1. Houfani A.A., Anders N., Spiess A.C., Baldrian P., Benallaoua S. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars – a rewier. Biomass Bioenergy. 2020;134(20):105481. https://doi.org/10.1016/j.biombioe.2020.105481
2. Arumugam A., Malolan V.V., Ponnusami V. Contemporary Pretreatment Strategies for Bioethanol Production from Corncobs. Waste Biomass Valor. 2021;12(4):577–612. https://doi.org/10.1016/10.1007/s12649-020-00983-w
3. Behera S.S., Ray R.C. Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. Int. J. Biol. Macromol. 2016;86:656–669. https://doi.org/10.1016/j.ijbiomac.2015.10.090
4. Cirujano F.G., Dhakshinamoorthy A. Challenges and opportunities for the encapsulation of enzymes over porous solids for Biodiesel production and Cellulose valorization into Glucose. ChemCatChem. 2021;13(22):4679–4693. http://doi.org/10.1002/cctc.202100943
5. Tabah B., Pulidindi I.N., Chitturi V.R., Varvak A., Foran E., Gedanken A. Solar-energy-driven conversion of biomass to bioethanol: A sustainable approach. J. Mater. Chem. A. 2017;5(30):15486–15506. http://doi.org/10.1039/C7TA03083E
6. Zanuso E., Gomes D.G., Ruiz H.A., Teixeira J.A., Domingues L. Enzyme immobilization as a strategy towards efficient and sustainable lignocellulosic biomass conversion into chemicals and biofuels: current status and perspectives. Sustainable Energy Fuels. 2021;5(17):4233–4247. http://doi.org/10.1039/D1SE00747E
7. Sulman E.M., Matveeva V.G., Bronstein L.M. Design of biocatalysts for efficient catalytic processes. Current Opinion in Chemical Engineering. 2019;26:1–8. http://doi.org/10.1016/j.coche.2019.06.005
8. Ramirez N., Serey M., Illanes A., Piumetti M., Ottone C. Immobilization strategies of photolyases: Challenges and perspectives for DNA repairing application. J. Photochem. Photobiol. B. 2021;215:112113. https://doi.org/10.1016/j.jphotobiol.2020.112113
9. Zhang S., Bilal M., Zdarta J., Cui J., Kumar A., Franco M., Ferreira L.F.R., Iqbal H.M.N. Biopolymers and nanostructured materials to develop pectinases-based immobilized nanobiocatalytic systems for biotechnological applications. Food Res. Int. 2021;140:109979. https://doi.org/10.1016/j.foodres.2020.109979
10. Gan J., Iqbal H.M.N., Show P.L., et al. Upgrading recalcitrant lignocellulosic biomass hydrolysis by immobilized cellulolytic enzyme–based nanobiocatalytic systems: a review. Biomass Conv. Bioref. 2024;14(1):4485–4509. http://doi.org/10.1007/s13399-022-02642-7
11. Holyavka M.G., Goncharova S.S., Redko Y.A., et al. Novel biocatalysts based on enzymes in complexes with nano- and micromaterials. Biophys. Rev. 2023;15(1):1127–1158. http://doi.org/10.1007/s12551-023-01146-6
12. Ahmed Z., Arshad A., Bilal M., et al. Nano-biocatalytic Systems for Cellulose de-polymerization: A Drive from Design to Applications. Top. Catal. 2023;66:592–605. http://doi.org/10.1007/s11244-023-01785-9
13. Zdarta J., Kołodziejczak-Radzimska A., Bachosz K., Rybarczyk A., Bilal M., Iqbal H.M.N., Buszewski B., Jesionowski T. Nanostructured supports for multienzyme coimmobilization for biotechnological applications: Achievements, challenges and prospects. Adv. Colloid Interface Sci. 2023;315:102889. https://doi.org/10.1016/j.cis.2023.102889
14. Cipolatti E.P., Valerio A., Henriques R.O., Moritz D.E., Ninow J.L., Freire D.M.G., Manoel E.A., Fernandez-Lafuente R., de Oliveira D. Nanomaterials for biocatalyst immobilization – State of the art and future trends. RSC Adv. 2016;6:104675–104692. https://doi.org/10.1039/C6RA22047A
15. Cavalcante F.T.T., de A. Falcão I.R., da S. Souza J.E., Rocha T.G., de Sousa I.G., Cavalcante A.L.G., de Oliveira A.L.B., de Sousa M.C.M., dos Santos J.C.S. Designing of Nanomaterials-Based Enzymatic Biosensors: Synthesis, Properties, and Applications. Electrochem. 2021;2(1): 149–184. http://doi.org/10.3390/electrochem2010012
16. Sudhir Singh A.P., Singhania R.R., Larroche C., Li Z. (Eds.). Biomass, Biofuels, Biochemicals; Advances in Enzyme Catalysis and Technologies. 1st ed. Amsterdam, The Netherlands: Elsevier; 2020. 472 p. ISBN 978-044-464114-4
17. Paul M., Mohapatra S., Kumar Das Mohapatra P., Thatoi H. Microbial cellulases – An update towards its surface chemistry, genetic engineering and recovery for its biotechnological potential. Bioresour. Technol. 2021;340:125710. https://doi.org/10.1016/j.biortech.2021.125710
18. Zhou Z., Ju X., Chen J., Wang R., Zhong Y., Li L. Chargeoriented strategies of tunable substrate affinity based on cellulase and biomass for improving in situ saccharification: a review. Bioresour. Technol. 2020;319:124159. https://doi.org/10.1016/j.biortech.2020.124159
19. Shanmugam S., Krishnaswamy S., Chandrababu R., Veerabagu U., Pugazhendhi A., Mathimani T. Optimal immobilization of Trichoderma asperellum laccase on polymer coated Fe3O4@SiO2 nanoparticles for enhanced biohydrogen production from delignified lignocellulosic biomass. Fuel. 2020;273:117777. https://doi.org/10.1016/j.fuel.2020.117777
20. Giannakopoulou A., Patila M., Spyrou K., Chalmpes N., Zarafeta D., Skretas G., Gournis D., Stamatis H. Development of a four-enzyme magnetic nanobiocatalyst for multi-step cascade reactions. Catalysts. 2019;9(12):995. https://doi.org/10.3390/catal9120995
21. Marino M.A., Fulaz S., Tasic L. Magnetic Nanomaterials as Biocatalyst Carriers for Biomass Processing: Immobilization Strategies, Reusability, and Applications. Magnetochemistry. 2021;7(10):133. https://doi.org/10.3390/magnetochemistry7100133
22. Hedaiatnia S., Ariaeenejad S., Kumleh H.H., Mirzaei H.H., Shakeri F., Motamedi E. Lactic acid production enhancement using metagenome-derived bifunctional enzyme immobilized on chitosan-alginate/nanocellulose hydrogel. Bioresour. Technol. Rep. 2024;25:101749. https://doi.org/10.1016/j.biteb.2023.101749
23. Maghraby Y.R., El-Shabasy R.M., Ibrahim A.H., Azzazy H.M.E. Enzyme Immobilization Technologies and Industrial Applications. ACS Omega. 2023;8(6):5184–5196. https://doi.org/10.1021/acsomega.2c07560
24. Xu C., Tong S., Sun L., Gu X. Cellulase immobilization to enhance enzymatic hydrolysis of lignocellulosic biomass: An all-inclusive review. Carbohydr. Polym. 2023;321:121319. https://doi.org/10.1016/j.carbpol.2023.121319
25. Zhou M., Ju X., Zhou Z., Yan L., Chen J., Yao X., Xu X., Li L.-Z. Development of an immobilized cellulase system based on metal-organic frameworks for improving ionic liquid tolerance and in situ saccharification of bagasse. ACS Sustainable Chem. Eng. 2019;7(23):19185–19193. https://doi.org/10.1021/acssuschemeng.9b05175
26. Zhou M., Yan L., Chen H., Ju X., Zhou Z., Li L. Development of functionalized metal-organic frameworks immobilized cellulase with enhanced tolerance of aqueous-ionic liquid media for in situ saccharification of bagasse. Fuel. 2021;304:121484. https://doi.org/10.1016/j.fuel.2021.121484
27. Wu L.M., Zeng Q.H., Ding R., Tu P.P., Xia M.Z. Fe3O4/Acid activated montmorillonite/cellulase composites: Preparation, structure, and enzyme activity. Appl. Clay Sci. 2019;179(13):105129. http://doi.org/10.1016/j.clay.2019.105129
28. Li L.-J., Xia W.-J., Ma G.-P., Chen Y.-L., Ma Y.-Y. A study on the enzymatic properties and reuse of cellulase immobilized with carbon nanotubes and sodium alginate. AMB Express. 2019;9:112. https://doi.org/10.1186/s13568-019-0835-0
29. Costantini A., Venezia V., Pota G., Bifulco A., Califano V., Sannino F. Adsorption of cellulase on wrinkled silica nanoparticles with enhanced inter-wrinkle distance. Nanomaterials. 2020;10(9):1799. https://doi.org/10.3390/nano10091799
30. Saha K., Verma P., Sikder J., Chakraborty S., Curcio S. Synthesis of chitosan-cellulase nanohybrid and immobilization on alginate beads for hydrolysis of ionic liquid pretreated sugarcane bagasse. Renew. Energy. 2019;133:66–76. http://doi.org/10.1016/j.renene.2018.10.014
31. Ahmed I.N., Yang X.-L., Dubale A.A., Li R.-F., Ma Y.-M., Wang L.-M., Hou G.-H., Guan R.-F., Xie M.-H. Hydrolysis of cellulose using cellulase physically immobilized on highly stable zirconium based metal-organic frameworks. Bioresour. Technol. 2018;270:377–382. https://doi.org/10.1016/j.biortech.2018.09.077
32. Zhu Y., Han J., Wu J., Li Y., Wang L., Mao Y., Wang Y. A two-step method for the synthesis of magnetic immobilized cellulase with outstanding thermal stability and reusability. New J. Chem. 2021;45(13):6144–6150. https://doi.org/10.1039/D0NJ06037B
33. Singh N., Dhanya B.S., Verma M.L. Nano-immobilized biocatalysts and their potential biotechnological applications in bioenergy production. Mater. Sci. Energy Technol. 2020;3:808–824. https://doi.org/10.1016/j.mset.2020.09.006
34. Wu J., Han J., Mao Y., Wang L., Wang Y., Li Y., Wang Y. Bionic mineralization growth of UIO-66 with bovine serum for facile synthesis of Zr-MOF with adjustable mesopores and its application in enzyme immobilization. Sep. Purif. Technol. 2022;297(16):121505. http://doi.org/10.1016/j.seppur.2022.121505
35. Wu J., Wang Y., Han J., Wang L., Li C., Mao Y., Wang Y. A method of preparing mesoporous Zr-based MOF and application in enhancing immobilization of cellulase on carrier surface. Biochem. Eng. J. 2022;180:108342. http://doi.org/10.1016/j.bej.2022.108342
36. Zhang X., Zheng S., Tao J., Wang X. In Situ Encapsulation of Cellulase in a Novel Mesoporous Metal-Organic Framework. Catal. Lett. 2022;152(70):699–706. https://doi.org/10.1007/s10562-021-03672-y
37. Amaro-Reyes A., Diaz-Hernandez A., Gracida J., Garcia-Almendarez B.E., Escamilla-Garcia M., Arredondo-Ochoa T., Regalado C. Enhanced performance of immobilized xylanase/filter paper-ase on a magnetic chitosan support. Catalysts. 2019;9(11):966. http://doi.org/10.3390/catal9110966
38. Zheng T., Yang L., Ding M., Huang C., Yao J. Metalorganic framework promoting high-solids enzymatic hydrolysis of untreated corncob residues. Bioresour. Technol. 2022;344(Pt. A):126163. https://doi.org/10.1016/j.biortech.2021.126163
39. Mo H., Qiu J., Yang C., Zang L., Sakai E., Chen J. Porous biochar/chitosan composites for high performance cellulase immobilization by glutaraldehyde. Enzym. Microb. Technol. 2020;138:109561. https://doi.org/10.1016/j.enzmictec.2020.109561
40. Salem M., Mauguen Y., Prange T. Revisiting glutaraldehyde cross-linking: The case of the Arg-Lys intermolecular doublet. Acta Crystallogr. Sect. F: Struct. Biol. Cryst. Commun. 2010;66(Pt. 3):225–228. https://doi.org/10.1107/s1744309109054037
41. Yamato K., Yoshida Y., Kumamoto Y., Isogai A. Surface modification of TEMPO-oxidized cellulose nanofibers, and properties of their acrylate and epoxy resin composite films. Cellulose. 2022;29(5):2839–2853. https://doi.org/10.1007/s10570-021-04131-y
42. Handoko, Panigrahi N.R., Arora P.S. Two-component redox organocatalyst for peptide bond formation. J. Am. Chem. Soc. 2022;144(8):3637–3643. https://doi.org/10.1021/jacs.1c12798
43. Paz-Cedeno F.R., Carceller J.M., Iborra S., Donato R.K., Godoy A.P., Veloso de Paula A., Monti R., Corma A., Masarin F. Magnetic graphene oxide as a platform for the immobilization of cellulases and xylanases: Ultrastructural characterization and assessment of lignocellulosic biomass hydrolysis. Renew. Energy. 2021;164:491–501. https://doi.org/10.1016/j.renene.2020.09.059
44. Huang YY., Zhan P., Wang F., et al. Cellulase immobilized onto amino-functionalized magnetic Fe3O4@SiO2 nanoparticle for poplar deconstruction. Chem. Pap. 2022;
45. Gao J., Lu C.-L., Wang Y., Wang S.-S., Shen J.-J., Zhang J.-X., Zhang Y.-W. Rapid immobilization of cellulase onto graphene oxide with a hydrophobic spacer. Catalysts. 2018;8(5):180. https://doi.org/10.3390/catal8050180
46. Zou Z., Gau E., El-Awaad I., Jakob F., Pich A., Schwaneberg U. Selective Functionalization of Microgels with Enzymes by Sortagging. Bioconjug. Chem. 2019;30(11):2859–2869. https://doi.org/10.1021/acs.bioconjchem.9b00568
47. Cambria E., Renggli K., Ahrens C.C., Cook C.D., Kroll C., Krueger A.T., Imperiali B., Griffith L.G. Covalent Modification of Synthetic Hydrogels with Bioactive Proteins via Sortase-Mediated Ligation. Biomacromolecules. 2015;16(8): 2316–2326. https://doi.org/10.1021/acs.biomac.5b00549
48. Hojnik Podrepsek G., Knez Z., Leitgeb M. Activation of cellulase cross-linked enzyme aggregates (CLEAs) in scCO2. J. Supercrit. Fluids. 2019;154:104629. http://doi.org/10.1016/j.supflu.2019.104629
49. Blanco-Llamero C., Garcia-Garcia P., Senorans F.J. Cross-Linked Enzyme Aggregates and Their Application in Enzymatic Pretreatment of Microalgae: Comparison Between CLEAs and Combi-CLEAs. Front. Bioeng. Biotechnol. 2021;9:794672. https://doi.org/10.3389/fbioe.2021.794672
50. Ifko D., Vasic K., Knez Z., Leitgeb M. (Magnetic) cross-linked enzyme aggregates of cellulase from T. reesei: A stable and efficient biocatalyst. Molecules. 2023;28(3):1305. https://doi.org/10.3390/molecules28031305
51. Han J., Feng H., Wu J., Li Y., Zhou Y., Wang L., Luo P., Wang Y. Construction of multienzyme co-immobilized hybrid nanoflowers for an efficient conversion of cellulose into glucose in a cascade reaction. J. Agric. Food Chem. 2021;69(28): 7910–7921. https://doi.org/10.1021/acs.jafc.1c02056
52. Ge J., Lei J., Zare R.N. Protein−inorganic hybrid nanoflowers. Nat. Nanotechnol. 2012;7(7):428−432. https://doi.org/10.1038/nnano.2012.80
53. Pota G., Sapienza Salerno A., Costantini A., Silvestri B., Passaro J., Califano V. Co-immobilization of Cellulase and β-Glucosidase into Mesoporous Silica Nanoparticles for the Hydrolysis of Cellulose Extracted from Eriobotrya japonica Leaves. Langmuir. 2022;38(18):5481–5493. https://doi.org/10.1021/acs.langmuir.2c00053
54. Chen B., Qiu J., Mo H., Yu Y., Ito K., Sakai E., Feng H. Synthesis of mesoporous silica with different pore sizes for cellulase immobilization: Pure physical adsorption. New J. Chem. 2017;41(17):9338–9345. https://doi.org/10.1039/C7NJ00441A
55. Zarei A., Alihosseini F., Parida D., Nazir R., Gaan S. Fabrication of Cellulase Catalysts Immobilized on a Nanoscale Hybrid Polyaniline/Cationic Hydrogel Support for the Highly Efficient Catalytic Conversion of Cellulose. ACS Appl. Mater. Interfaces. 2021;13(42):49816–49827. https://doi.org/10.1021/acsami.1c12263
56. Ariaeenejad S., Motamedi E., Hosseini Salekdeh G. Stable cellulase immobilized on graphene oxide@CMC-g-poly(AMPS-co-AAm) hydrogel for enhanced enzymatic hydrolysis of lignocellulosic biomass. Carbohydr. Polym. 2020;230:115661. https://doi.org/10.1016/j.carbpol.2019.115661
57. Wang Y., Chen D., Wang G., Zhao C., Ma Y., Yang W. Immobilization of cellulase on styrene/maleic anhydride copolymer nanoparticles with improved stability against pH changes. Chem. Eng. J. 2018;336:152–159. https://doi.org/10.1016/j.cej.2017.11.030
58. Lu L., Zhang L., Yuan L., Zhu T., Chen W., Wang G., Wang Q. Artificial Cellulosome Complex from the Self-Assembly of Ni-NTA-Functionalized Polymeric Micelles and Cellulases. ChemBioChem. 2019;20(11):1394–1399. https://doi.org/10.1002/cbic.201900061
59. Kaur P., Taggar M.S., Kalia A. Characterization of magnetic nanoparticle-immobilized cellulases for enzymatic saccharification of rice straw. Biomass Convers. Biorefin. 2021;11(3):955–969. https://doi.org/10.1007/s13399-020-00628-x
60. Kumar S., Morya V., Gadhavi J., Vishnoi A., Singh J., Datta B. Investigation of nanoparticle immobilized cellulase: Nanoparticle identity, linker length and polyphenol hydrolysis. Heliyon. 2019;5(5):e01702. https://doi.org/10.1016/j.heliyon.2019.e01702
61. Yu D., Ma X., Huang Y., Jiang L., Wang L., Han C., Yang F. Immobilization of cellulase on magnetic nanoparticles for rice bran oil extraction in a magnetic fluidized bed. Int. J. Food Eng. 2022;18(1):15–26. https://doi.org/10.1515/ijfe-2021-0111
62. Marino M.A., Moretti P., Tasic L. Immobilized commercial cellulases onto amino-functionalized magnetic beads for biomass hydrolysis: Enhanced stability by non-polar silanization. Biomass Convers. Biorefin. 2022;13(10):1007. https://doi.org/10.1007/s13399-021-01798-y
63. Rong G.-X., Lv Z.-X., Pan Z.-J., Zhang S.-L., Deng P. Covalent immobilization of cellulase onto amino and graphene oxide functionalized magnetic Fe2O3/Fe3O4@SiO2 nanocomposites. J. Nanosci. Nanotechnol. 2021;21(9):4749–4757. https://doi.org/10.1166/jnn.2021.19127
64. Yi J., Qiu M., Zhu Z., Dong X., Andrew Decker E., McClements D.J. Robust and recyclable magnetic nanobiocatalysts for extraction of anthocyanin from black rice. Food Chem. 2021;364:130447. https://doi.org/10.1016/j.foodchem.2021.130447
65. Huang W., Pan S., Li Y., Yu L., Liu R. Immobilization and characterization of cellulase on hydroxy and aldehyde functionalized magnetic Fe2O3/Fe3O4 nanocomposites prepared via a novel rapid combustion process. Int. J. Biol. Macromol. 2020;162:845–852. https://doi.org/10.1016/j.ijbiomac.2020.06.209
66. Kumar A., Singh S., Nain L. Magnetic nanoparticle immobilized cellulase enzyme for saccharification of paddy straw. Int. J. Curr. Microbiol. Appl. Sci. 2018;7(05):881–893. http://dx.doi.org/10.20546/ijcmas.2018.704.095
67. Dal Magro L., Silveira V.C.C., Weber de Menezes E., Benvenutti E.V., Nicolodi S., Hertz P.F., Klein M.P., Rodrigues R.C. Magnetic biocatalysts of pectinase and cellulase: Synthesis and characterization of two preparations for application in grape juice clarification. Int. J. Biol. Macromol. 2018;115: 35–44. https://doi.org/10.1016/j.ijbiomac.2018.04.028
68. Rashid S.S., Mustafa A.H., Rahim M.H.A., Gunes B. Magnetic nickel nanostructure as cellulase immobilization surface for the hydrolysis of lignocellulosic biomass. Int. J. Biol. Macromol. 2022;209:1048–1053. https://doi.org/10.1016/j.ijbiomac.2022.04.072
69. Javid A., Amiri H., Kafrani A.T., Rismani-Yazdi H. Posthydrolysis of cellulose oligomers by cellulase immobilized on chitosan-grafted magnetic nanoparticles: A key stage of butanol production from waste textile. Int. J. Biol. Macromol. 2022;207:324–332. https://doi.org/10.1016/j.ijbiomac.2022.03.013
70. Zanuso E., Ruiz H.A., Domingues L., Teixeira J.A. Magnetic Nanoparticles as Support for Cellulase Immobilization Strategy for Enzymatic Hydrolysis Using Hydrothermally Pretreated Corn Cob Biomass. BioEnergy Res. 2022;15(4):1946–1957. http://doi.org/10.1007/s12155-021-10384-z
71. Asar M.F., Ahmad N., Husain Q. Chitosan modified Fe3O4/graphene oxide nanocomposite as a support for high yield and stable immobilization of cellulase: Its application in the saccharification of microcrystalline cellulose. Prep. Biochem. Biotechnol. 2020;50(5):460–467. https://doi.org/10.1080/10826068.2019.1706562
72. Diaz-Hernandez A., Gracida J., Garcia-Almendarez B.E., Regalado C., Nunez R., Amaro-Reyes A. Characterization of magnetic nanoparticles coated with chitosan: A potential approach for enzyme immobilization. J. Nanomater. 2018;2018:9468574. https://doi.org/10.1155/2018/9468574
73. Cui J., Li L., Kou L., Rong H., Li B., Zhang X. Comparing Immobilized Cellulase Activity in a Magnetic Three-Phase Fluidized Bed Reactor under Three Types of Magnetic Field. Ind. Eng. Chem. Res. 2018;57(32):10841–10850. https://doi.org/10.1021/acs.iecr.8b02195
74. Hosseini S.H., Hosseini S.A., Zohreh N., Yaghoubi M., Pourjavadi A. Covalent immobilization of cellulase using magnetic poly(ionic liquid) support: Improvement of the enzyme activity and stability. J. Agric. Food Chem. 2018;66(4):789–798. https://doi.org/10.1021/acs.jafc.7b03922
75. Sanchez-Ramirez J., Martinez-Hernandez J.L., Lopez-Campos R.G., Segura-Ceniceros E.P., Saade H., Ramos-Gonzalez R., Neira-Velazquez M.G., Medina-Morales M.A., Aguilar C.N., Ilyina A. Laccase Validation as Pretreatment of Agave Waste Prior to Saccharification: Free and Immobilized in Superparamagnetic Nanoparticles Enzyme Preparations. Waste Biomass Valorization. 2018;9(2):223–234. https://doi.org/10.1007/s12649-016-9774-z
76. Abbaszadeh M., Hejazi P. Metal affinity immobilization of cellulase on Fe3O4 nanoparticles with copper as ligand for biocatalytic applications. Food Chem. 2019;290:47–55. https://doi.org/10.1016/j.foodchem.2019.03.117
77. Poorakbar E., Saboury A.A., Laame Rad B., Khoshnevisan K. Immobilization of Cellulase onto Core-Shell Magnetic Gold Nanoparticles Functionalized by Aspartic Acid and Determination of its Activity. Protein J. 2020;39(4):328–336. https://doi.org/10.1007/s10930-020-09906-z
78. Jannah Sulaiman N., Mansor A.F., Rahman R.A., Illias R.M., Shaarani S.M. Adsorption Kinetics of Cellulase and Xylanase Immobilized on Magnetic Mesoporous Silica. Chem. Eng. Technol. 2019:42(9):1825–1833. https://doi.org/10.1002/ceat.201800657
79. Zhang Y., Jin P., Liu M., Pan J., Yan Y., Chen Y., Xiong Q. A novel route for green conversion of cellulose to HMF by cascading enzymatic and chemical reactions. AIChE J. 2017;63(11):4920–4932. http://doi.org/10.1002/aic.15841
80. Schnell F., Kube M., Berensmeier S., Schwaminger S.P. Magnetic Recovery of Cellulase from Cellulose Substrates with Bare Iron Oxide Nanoparticles. ChemNanoMat. 2019;5(4):422–426. http://doi.org/10.1002/cnma.201800658
81. Ingle A.P., Rathod J., Pandit R., da Silva S.S., Rai M. Comparative evaluation of free and immobilized cellulase for enzymatic hydrolysis of lignocellulosic biomass for sustainable bioethanol production. Cellulose. 2017;24(12):5529–5540. http://doi.org/10.1007/s10570-017-1517-1.
Supplementary files
|
1. (a) Structural organization of the cellulosome in Clostridium thermocellum cells, (b) functionalized Ni–NTA micelles for cellulase immobilization, and (c) the interaction of Ni–NTA with cellulase molecules tagged with His6 [58] | |
Subject | ||
Type | Исследовательские инструменты | |
View
(236KB)
|
Indexing metadata ▾ |
- This article reviews scientific developments in the immobilization of cellulase on nanostructured carriers.
- Nanostructured carriers have a large surface area, providing high immobilization efficiency, and also create a favorable environment for activating cellulase and increasing its stability. This allows one to create nanobiocatalysts for efficient conversion of cellulose substrate.
- The article describes such nanostructured carriers as graphene layers, polymer nanoparticles, nanohydrogels, nanofibers, silica nanoparticles, hierarchical porous materials, and magnetic nanoparticles.
- The use of magnetic nanoparticles is especially advantageous due to their easy separation and the possibility of extracting the nanobiocatalyst for reuse.
Review
For citations:
Sulman A.M., Molchanov V.P., Balakshina D.V., Grebennikova O.V., Matveeva V.G. New nanostructured carriers for cellulase immobilization. Fine Chemical Technologies. 2025;20(2):119-136. https://doi.org/10.32362/2410-6593-2025-20-2-119-136. EDN: LWMGXO