Preview

Fine Chemical Technologies

Advanced search

Structure and properties of Li ferrite synthesized from Fe2O3–Li2CO3–Sm2O3 powders

https://doi.org/10.32362/2410-6593-2025-20-1-63-74

EDN: XZSYPF

Abstract

Objectives. To study the structure and properties of lithium ferrites obtained by preliminary solid-phase synthesis of samples based on Fe2O3-Li2CO3-Sm2O3 powder mixtures having various concentrations of samarium oxide (0, 4.7, and 14.7 wt %) at 900°C and their subsequent high-temperature sintering at 1150°C.

Methods. The structural and morphological characteristics of the synthesized and sintered samples were studied by X-ray powder diffraction analysis, scanning electron microscopy, thermogravimetric analysis, and differential scanning calorimetry.

Results. The preliminary synthesis gives a two-phase composite structure containing unsubstituted lithium ferrite Li0.5Fe2.5O4 having a spinel structure and a perovskite-like SmFeO3 phase. An increase in the Sm2O3 content from 4.7 to 14.7 wt % in the initial Fe2O3-Li2CO3-Sm2O3 mixture leads to an increase in the amount of the secondary SmFeO3 phase in the synthesized samples from 4.9 to 18.2 wt %. The high Curie temperature values (631–632°C) and obtained values of the enthalpy of the a→b phase transitions in lithium ferrite indicate that the main product in all synthesized samples is the ordered a-Li0.5Fe2.5O4 phase. Subsequent sintering at elevated temperatures leads to a decrease in the SmFeO3 phase content to 3.8 and 16.5 wt % and to an increase in the content of the lithium ferrite phase. The sample not modified with samarium contains a significant amount of the disordered b-Li0.5Fe2.5O4 phase, as confirmed by the reduced values of the Curie temperature and phase transition enthalpy. The density of such a sample is 4.4 g/cm3. The introduction of samarium ions leads to the preservation of the ordered a-Li0.5Fe2.5O4 phase during sintering. The density of the sintered samples decreases to 4.3 and 4.1 g/cm3 with an increase in the concentration of samarium oxide introduced at the synthesis stage to 4.7 and 14.7 wt %, respectively.

Conclusions. The introduction of samarium oxide to low concentrations (up to 4.7 wt %) during ferrite synthesis leads to the formation of a two-phase composite structure during sintering, which mainly consists of an unsubstituted lithium ferrite phase having more regular polyhedral grains and a low content of the secondary perovskite-like phase. The formation of the secondary phase, whose properties differ from those of ferrite, along with the characteristics obtained for such samples, which include a slight decrease in density while maintaining a high Curie temperature corresponding to the main magnetic phase, make ferrites modified with low concentrations of rare earth elements promising for further study of their electromagnetic properties in the microwave range.

About the Authors

E. N. Lysenko
Tomsk Polytechnic University
Russian Federation

Elena N. Lysenko, Dr. Sci. (Eng.), Professor, Head of the Laboratory, Research Laboratory for Electronics, Semiconductors and Dielectrics, Research School of High-Energy Physics

Scopus Author ID 25027787100, ResearcherID K-1582-2013

30, Lenina pr., Tomsk, 634034


Competing Interests:

The authors declare no conflicts of interest.



V. A. Vlasov
Tomsk Polytechnic University
Russian Federation

Vitaly A. Vlasov, Cand. Sci. (Phys.-Math.), Senior Researcher, Research Laboratory for Electronics, Semiconductors and Dielectrics, Research School of High-Energy Physics

Scopus Author ID 7202194125, ResearcherID K-1257-2013

30, Lenina pr., Tomsk, 634034


Competing Interests:

The authors declare no conflicts of interest.



Yu. S. Elkina
Tomsk Polytechnic University
Russian Federation

Yuliya S. Elkina, Postgraduate Student, Engineer, Research Laboratory for Electronics, Semiconductors and Dielectrics, Research School of High-Energy Physics

Scopus Author ID 58892380200, ResearcherID HHS-0003-2022

30, Lenina pr., Tomsk, 634034


Competing Interests:

The authors declare no conflicts of interest.



A. P. Surzhikov
Tomsk Polytechnic University
Russian Federation

Anatoly P. Surzhikov, Dr. Sci. (Phys.-Math.), Professor, Head of the Department, Division for Testing and Diagnostics, School of Non-Destructive Testing

Scopus Author ID 6603494148, ResearcherID K-1224-2013

30, Lenina pr., Tomsk, 634034


Competing Interests:

The authors declare no conflicts of interest.



References

1. Trukhanov A.V., Tishkevich D.I., Timofeev A.V., et al. Structural and electrodynamic characteristics of the spinel-based composite system. Ceram. Int. 2024;50(12): 21311–21317. https://doi.org/10.1016/j.ceramint.2024.03.241

2. Kostishin V.G., Vergazov R.M., Menshova S.B., Isaev I.M. Prospects for the use of ferrites with high magnetic permeability and permittivity as radio-absorbing materials. Russ. Technol. J. 2020;8(6):87–108 (in Russ.). https://doi.org/10.32362/2500-316X-2020-8-6-87-108

3. Kostishin V.G., Isaev I.M., Salogub D.V. Radio-Absorbing Magnetic Polymer Composites Based on Spinel Ferrites: A Review. Polymers. 2024;16(7):1003. https://doi.org/10.3390/polym16071003

4. Sherstyuk D.P., Starikov A.Yu., Zhivulin V.E., Zherebtsov D.A., Mikhailov G.G., Vinnik D.A. Study of the effect of cobalt substitution on the structure of nickel-zinc ferrite. Vestnik Yuzhno-Ural’skogo gosudarstvennogo universiteta. Seriya: Metallurgiya = Bulletin of the South Ural State University. Ser. Metallurgy. 2020;20(2):51–56 (in Russ.). https://doi.org/10.14529/met200205

5. Nikishina E.E. Heterophase synthesis of cobalt ferrite. Tonk. Khim. Tekhnol. = Fine Chem. Technol. 2021;16(6):502–511. https://doi.org/10.32362/2410-6593-2021-16-6-502-511

6. Gavrilova M.A., Gavrilova D.A., Kondrashkova I.S., Krasilin A.A. Formation of Zn0.5Ni0.5Fe2O4 Nanocrystals in Conditions of Solution Combustion: Effect of the Type of Fuel on the Structure and Morphology. Fizika i khimiya stekla. 2023;49(4):459–470 (in Russ.). https://doi.org/10.31857/S013266512260090X

7. Ahmad M., Shahid M., Alanazi Y.M., ur Rehman A., Asif M., Dunnill C.W. Lithium ferrite (Li0.5Fe2.5O4): synthesis, structural, morphological and magnetic evaluation for storage devices. J. Mater. Res. Technol. 2022;18:3386–3395. https://doi.org/10.1016/j.jmrt.2022.03.113

8. Askarzadeh N., Shokrollahi H. A review on synthesis, characterization and properties of lithium ferrites. Results in Chemistry. 2024;10:101679. https://doi.org/10.1016/j.rechem.2024.101679

9. Nikolaeva S.A., Lysenko E.N., Nikolaev E.V., Vlasov V.A., Surzhikov A.P. Microstructure and electromagnetic properties of Li0.65Fe1.6Ti0.5Zn0.2Mn0.05O4–Bi2O3–ZrO2 composite ceramics. J. Alloy. Compd. 2023;941:169025. https://doi.org/10.1016/j.jallcom.2023.169025

10. Lysenko E., Nikolaev E., Vlasov V., Surzhikov A. Microstructure and reactivity of Fe2O3-Li2CO3-ZnO ferrite system ball-milled in a planetary mill. Thermochim. Acta. 2018; 664:100–107. https://doi.org/10.1016/j.tca.2018.04.015

11. Martinson K.D., Ivanov A.A., Panteleev I.B., et al. Pre- Ceramic Nanostructured Liznmn-Ferrite Powders: Synthesis, Structure, and Electromagnetic Properties. Glass and Ceramics. 2020;77(5–6):215–220. https://doi.org/10.1007/s10717-020-00274-9 [Original Russian Text: Martinson K.D., Ivanov A.A., Panteleev I.B., Popkov V.I. Pre-Ceramic Nanostructured LiZnMn-Ferrite Powders: Synthesis, Structure, and Electromagnetic Properties. Steklo i keramika. 2020;6:16–23 (in Russ.).]

12. Isaev I.M., Kostishin V.G., Korovushkin V.V., et al. Crystal chemistry and magnetic properties of polycrystalline spinel ferrites Li0.33Fe2.29Zn0.21Mn0.17O4. Russ. J. Inorg. Chem. 2021;66(12):1917–1924. https://doi.org/10.1134/S0036023621120056 [Original Russian Text: Isaev I.M., Kostishin V.G., Korovushkin V.V., Shipko M.N., Timofeev A.V., Mironovich A.Yu., Salogub D.V., Shakirzyanov R.I. Crystal chemistry and magnetic properties of polycrystalline spinel ferrites Li0.33Fe2.29Zn0.21Mn0.17O4. Zhurnal neorganicheskoi khimii. 2021;66(12):1792–1800 (in Russ.). https://doi.org/10.31857/S0044457X21120059 ]

13. Mahmoudi M., Kavanlouei M., Maleki-Ghaleh H. Effect of composition on structural and magnetic properties of nanocrystalline ferrite Li0.5SmxFe2.5–xO4. Powd. Metal. Metal. Ceram. 2015;54: 31–39. https://doi.org/10.1007/s11106-015-9676-9

14. Slimani Y., Almessiere M.A., Güner S., Kurtan U., Shirsath S.E., Bayka A., Ercan I. Magnetic and microstructural features of Dy3+ substituted NiFe2O4 nanoparticles derived by sol–gel approach. J. Sol-Gel Sci. Techn. 2020;95:202–210. https://doi.org/10.1007/s10971-020-05292-1

15. Jacob B.P., Thankachan S., Xavier S., Mohammed E.M. Effect of Tb3+ substitution on structural, electrical and magnetic properties of sol–gel synthesized nanocrystalline nickel ferrite. J. Alloys Compd. 2013;578:314–319. https://doi.org/10.1016/j.jallcom.2013.04.147

16. Heiba Z.K., Mohamed M.B., Arda L., Dogan N. Cation distribution correlated with magnetic properties of nanocrystalline gadolinium substituted nickel ferrite. Magn. Magn. Mater. 2015;391:195–202. https://doi.org/10.1016/j.jmmm.2015.05.003

17. Ahmad S.I., Ansari S.A., Kumar D.R. Structural, morphological, magnetic properties and cation distribution of Ce and Sm co-substituted nano crystalline cobalt ferrite. Mater. Chem. Phys. 2018;208:248–257. https://doi.org/10.1016/j.matchemphys.2018.01.050

18. Nikumbh A.K., Pawar R.A., Nighot D.V., Gugale G.S., Sangale M.D., Khanvilkar M.B., Nagawade A.V. Structural, electrical, magnetic and dielectric properties of rareearth substituted cobalt ferrites nanoparticles synthesized by the co-precipitation method. Magn. Magn. Mater. 2014;355: 201–209. https://doi.org/10.1016/j.jmmm.2013.11.052

19. Ahmad I., Abbas T., Ziya A.B., Maqsood A. Structural and magnetic properties of erbium doped nanocrystalline Li–Ni ferrites. Ceram. Int. 2014;40(6):7941–7945. https://doi.org/10.1016/j.ceramint.2013.12.142

20. Junaid M., Khan M.A., Iqbal F., Murtaza G., Akhtar M.N., Ahmad M., Shakir I., Warsi M.F. Structural, spectral, dielectric and magnetic properties of Tb–Dy doped Li-Ni nano-ferrites synthesized via microemulsion route. Magn. Magn. Mater. 2016;419:338–344. https://doi.org/10.1016/j.jmmm.2016.06.043

21. Al-Hilli M.F., Li S., Kassim K.S. Structural analysis, magnetic and electrical properties of samarium substituted lithium–nickel mixed ferrites. Magn. Magn. Mater. 2012;324(5):873–879. https://doi.org/10.1016/j.jmmm.2011.10.005

22. Li D.-Y., Sun Y.-K., Xu Y., Ge H.-L., Wu Q., Yan C. Effects of Dy3+ substitution on the structural and magnetic properties of Ni0.5Zn0.5Fe2O4 nanoparticles prepared by a sol-gel self-combustion method. Ceram. Int. 2015;41(3B):4581–4589. https://doi.org/10.1016/j.ceramint.2014.11.156

23. Zhao L., Yang H., Yu L., Cui Y., Feng S. Effects of Gd2O3 on structure and magnetic properties of Ni–Mn ferrite. J. Mater. Sci. 2006;41:3083–3087. https://doi.org/10.1007/s10853-005-1545-3

24. Almessiere M.A., Slimani Y., Guner S., Nawaz M., Baykal A., Aldakheel F., Sadaqat A., Ercan I. Effect of Nb substitution on magneto-optical properties of Co0.5Mn0.5Fe2O4 nanoparticles. J. Mol. Struct. 2019;1195:269–279. https://doi.org/10.1016/j.molstruc.2019.05.075

25. Lin Q., Yuan G., He Y., Wang L., Dong J., Yu Y. The Influence of La-substituted Cu0.5Co0.5Fe2O4 nanoparticles on its structural and magnetic properties. Mater. Des. 2015;78: 80–84. https://doi.org/10.1016/j.matdes.2015.04.029

26. Lysenko E.N., Vlasov V.A., Nikolaeva S.A., Nikolaev E.V. TG, DSC, XRD, and SEM studies of the substituted lithium ferrite formation from milled Sm2O3/Fe2O3/Li2CO3 precursors. J. Therm. Anal. Calorim. 2023;148:1445–1453. https://doi.org/10.1007/s10973-022-11665-1

27. Ridley D.H., Lessoff H., Childress J.D. Effect of lithium and oxygen losses on magnetic and crystallographic properties of spinel lithium ferrite. J. Am. Ceram. Soc. 1970;53(6):304–311. https://doi.org/10.1111/j.1151-2916.1970.tb12113.x

28. Surzhikov A.P., Frangulyan T.S., Ghyngazov S.A., Lysenko E.N. Investigation of structural states and oxidation processes in Li0.5Fe2.5O4−δ using TG analysis. J. Therm. Anal. Calorim. 2012;108:1207–1212. https://doi.org/10.1007/s10973-011-1734-z

29. Lysenko E.N., Malyshev A.V., Vlasov V.A., Nikolaev E.V., Surzhikov A.P. Microstructure and thermal analysis of lithium ferrite pre-milled in a high-energy ball mill. J. Therm. Anal. Calorim. 2018;134:127–133. https://doi.org/10.1007/s10973018-7549-4.

30. Berbenni V., Marini A., Capsoni D. Solid state reaction study of the system Li2CO3/Fe2O3. Z. Naturforschung – Sect. J. Phys. Sci. 1998;53:997–1003. https://doi.org/10.1515/zna-1998-1212

31. An S.Y., Shim I.B., Kim C.S. Synthesis and magnetic properties of LiFe5O8 powders by a sol–gel process. Magn. Magn Mater. 2005;290–291:1551–1554. https://doi:10.1016/j.jmmm.2004.11.244

32. Mazen S.A., Abu-Elsaad N.I. Characterization and magnetic investigations of germanium-doped lithium ferrite. Ceram. Int. 2014;40:11229–11237. https://doi.org/10.1016/j.ceramint.2014.03.167

33. Ahniyaz A., Fujiwara T., Song S.-W., Yoshimura M. Low temperature preparation of β-LiFe5O8 fine particles by hydrothermal ball milling. J. Solid State Ion. 2002;151: 419–423. https://doi.org/10.1016/S0167-2738(02)00548-9


Supplementary files

1. Crystal lattices of SmFeO3
Subject
Type Исследовательские инструменты
View (78KB)    
Indexing metadata ▾
  • Lithium ferrites were obtained by preliminary synthesis of samples at 900°C based on powder mixtures of Sm2O3–Fe2O3–Li2CO3 and their subsequent high-temperature sintering at 1150°C using the ceramic method with the addition of samarium oxide in various concentrations.
  • In the process of synthesis and sintering, substituted lithium ferrites were not formed, but composites consist of pure lithium ferrite Li5Fe2.5O4 (α and β modifications) and the perovskite phase of SmFeO3 were obtained. It was confirmed using X-ray phase analysis, thermogravimetric analysis, and differential scanning calorimetry.
  • The data obtained allows lithium ferrites to be used in studies of their electromagnetic properties in the microwave range.

Review

For citations:


Lysenko E.N., Vlasov V.A., Elkina Yu.S., Surzhikov A.P. Structure and properties of Li ferrite synthesized from Fe2O3–Li2CO3–Sm2O3 powders. Fine Chemical Technologies. 2025;20(1):63-74. https://doi.org/10.32362/2410-6593-2025-20-1-63-74. EDN: XZSYPF

Views: 657


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)