Preview

Fine Chemical Technologies

Advanced search

Study into optimizing the temperature regime for the reduction of Fischer–Tropsch synthesis catalysts

https://doi.org/10.32362/2410-6593-2025-20-1-27-36

EDN: LXJSOV

Abstract

Objectives. The work set out to investigate the potential for developing an efficient cobalt catalyst for Fischer–Tropsch synthesis through low-temperature activation by reduction in hydrogen directly in the synthesis reactor. Such an approach could be used to enhance the overall economic viability of the process.

Methods. The reduction of a zeolite-containing catalyst with a heat-conducting system based on thermally expanded graphite in an aluminum oxide binder carrier was investigated within the temperature range of 300–400°C. The degree of reduction of the powdered catalyst (to remove diffusion restrictions) was determined by conducting temperature-programmed reduction subsequent to the reduction at the studied temperature. Autosorb-1C and STA 449 F1 (Netzsch, Germany) devices were used in this work. The identified activation mode was evaluated at a Fischer–Tropsch synthesis pilot plant at INFRA (Moscow, Russia).

Results. Activity and selectivity values of the catalyst reduced at 325°C are determined from chromatographic analysis of the products. Low-temperature (325°C) reduction is shown to provide better catalytic parameters due to the implementation of a larger number of highly dispersed cobalt-oxide structures fixed on the hydrated surface of the support, resulting in the appearance of Coδ+ centers with increased activity and selectivity for the formation of C5+ hydrocarbons.

Conclusions. The described catalytic system demonstrates the potential advantages in carrying out reductive activation in hydrogen at 325°C as opposed to the conventional 400°C. This approach markedly enhances the economic viability of the entire process, particularly for small-scale installations, due to the reduced thermal stability of the steel material reactor.

About the Authors

I. G. Solomonik
NRC “Kurchatov Institute” – TISNCM; INFRA
Russian Federation

Igor G. Solomonik, Cand. Sci. (Chem.), Leading Researcher, Laboratory of New Chemical Technologies, Department of Carbon Nanostructures, Technological Institute for Superhard and Novel Carbon Materials 

Scopus Author ID 57191762433

7a, Tsentralnaya ul., Troitsk, Moscow, 108840


Competing Interests:

The authors declare no conflict of interest warranting disclosure in this article.



V. Z. Mordkovich
NRC “Kurchatov Institute” – TISNCM; INFRA
Russian Federation

Vladimir Z. Mordkovich, Dr. Sci. (Chem.), Research Deputy Director, Technological Institute for Superhard and Novel Carbon Materials 

Scopus Author ID 7005798833, ResearcherID L-2077-2013, ResearcherID J-7201-2015

7a, Tsentralnaya ul., Troitsk, Moscow, 108840


Competing Interests:

The authors declare no conflict of interest warranting disclosure in this article.



A. S. Gorshkov
INFRA
Russian Federation

Andrey S. Gorshkov, Leading Engineer

Scopus Author ID 57216969878

2 B-1/3, Promyshlennaya ul., Troitsk, Moscow, 108841


Competing Interests:

The authors declare no conflict of interest warranting disclosure in this article.



References

1. Ngamcharussrivichai C., Liu X., Li X., Vitidsant T., Fujimoto K. An active and selective production of gasolinerange hydrocarbons over bifunctional Co-based catalysts. Fuel. 2007;86(1–2):50–59. https://doi.org/10.1016/J.FUEL.2006.06.021

2. Bechara R., Balloy D., Vanhove D. Catalytic properties of Co/Al2O3 system for hydrocarbon synthesis. Appl. Cat. A: Gen. 2001;207(1–2):343–353. https://doi.org/10.1016/S0926860X(00)00672-4

3. Xiong H., Zhang Y., Liew K., Li J. Catalytic performance of zirconium-modified Co/Al2O3 for Fischer–Tropsch synthesis. J. Mol. Cat. A: Chem. 2005;231(1–2):145–151. https://doi.org/10.1016/J.MOLCATA.2004.12.033

4. Pankina G.V., Chernavskii P.A., Lermontov A.S., et al. Prediction of the activity and selectivity of supported cobalt Fischer–Tropsch catalysts. Petroleum Chemistry. 2001;41(5):319–323. [Original Russian Text: Pankina G.V., Chernavskii P.A., Lermontov A.S., Lunin V.V. Prediction of the activity and selectivity of supported cobalt Fischer–Tropsch catalysts. Neftekhimiya. 2001;41(5):348–353 (in Russ.).]

5. Das T.K., Jacobs G., Patterson P.M., Conner W.A., Li J., Davis B.H. Fischer–Tropsch synthesis: characterization and catalytic properties of rhenium promoted cobalt alumina catalysts. Fuel. 2003;82(7):805–815. https://doi.org/10.1016/S0016-2361(02)00361-7

6. Clarkson J.S., Colley S.W. Cobalt Catalyst Activation Process: Pat. WO2002083717. Publ. 24.10.2002

7. Moen A., Nicholson D.G., Rønning M., Emerich H. In situ X-ray absorption spectroscopic studies at the cobalt K-edge on an Al2O3-supported rhenium-promoted cobalt Fischer–Tropsch catalyst. Comparing reductions in high and low concentration hydrogen. J. Mater. Chem. 1998;8(11):2533–2539. https://doi.org/10.1039/A804261F

8. Loginova A.N., Mikhailov M.N., Grigor’ev D.A., Sviderskii S.A. Method of Activation of Cobalt Catalyst of Fischer–Tropsch Synthesis: RF Pat. RU 2445161 С1. Publ. 20.03.2012 (in Russ.).

9. Lok K.M., West J. High Cobalt Content, High Cobalt Surface Area Catalysts, Preparation and Use Thereof: Pat. WO-А-2006/021754. Publ. 02.03.2006.

10. Khangale P.R., Meijboom R., Jalama K. Reduction Behaviour for Co/Al2O3 Fischer–Tropsch Catalyst in Presence of H2 or CO. In: Proceedings of the World Congress on Engineering 2014. 2014. V. II. URL: http://www.iaeng.org/publication/WCE2014/WCE2014_pp1048-1051.pdf

11. Khangale P.R., Meijboom R., Jalama K. Fischer–Tropsch synthesis over unpromoted Co/ɣ-Al2O3 catalyst: Effect of activation with CO compared to H2 on catalyst performance. Bull. Chem. React. Eng. Catal. 2019;14(1):35–41. https://doi.org/10.9767/bcrec.14.1.2519.35-41

12. Shiba N.C., Liu X., Hildebrandt D., Yao Y. Effect of pretreatment conditions on the activity and selectivity of cobalt-based catalysts for CO hydrogenation. Reactions. 2021;2(3):258–274. https://doi.org/10.3390/reactions2030016

13. Solomonik I.G., Gogol’ O.V. The influence of the gas environment and temperature on the structural characteristics and the possibility of cobalt agglomeration in Fischer–Tropsch catalysts. In: Proceedings of the 6th Russian Conference with the participation of CIS countries “Scientific Foundations of the Preparation and Technology of Catalysts” and 3rd Russian Conference “Problems of Deactivation of Catalysts.” 2008. V. 2. P. 210–211 (in Russ.).

14. Mordkovich V.Z., Ermolaev V.S., Mitberg E.B., Sineva L.V., Solomonik I.G., Ermolaev I.S., Asalieva E.Yu. Composite pelletized catalyst for higher one-pass conversion and productivity in Fischer–Tropsch process. Res. Chem. Intermed. 2015;41(12):9539–9550. https://doi.org/10.1007/s11164-015-1978-5

15. Ghogia A.C., Nzihou A., Serp P., Soulantica K., Pham Minh D. Cobalt catalysts on carbon-based materials for Fischer–Tropsch synthesis: a review. Appl. Cat. A: Gen. 2021;609:117906. https://doi.org/10.1016/j.apcata.2020.117906

16. Mikhailova Ya.V., Sineva L.V., Mordkovich V.Z., Sviderskii S.A., Solomonik I.G., Ermolaev V.C. Catalyst for Fischer–Tropsch Synthesis and the Method of its Preparation: RF Pat. RU 2325226 C1. Publ. 20.06.2008 (in Russ.).

17. Asalieva E., Sineva L., Sinichkina S., Solomonik I., Gryaznov K., Pushina E., Kulchakovskaya E., Gorshkov A., Kulnitskiy B., Ovsyannikov D., Zholudev S., Mordkovich V. Exfoliated graphite as a heat-conductive frame for a new pelletized Fischer–Tropsch synthesis catalyst. Appl. Cat. A: Gen. 2020;601:117639. https://doi.org/10.1016/j.apcata.2020.117639

18. Solomonik I.G., Mordkovich V.Z. Determination of the conditions of technologically optimized reduction of highperformance Fischer–Tropsch synthesis catalysts. Kataliz v promyshlennosti. 2024;24(3):60–70 (in Russ.). https://doi.org/10.18412/1816-0387-2024-3-60-70

19. Sewak R., Dey C.C., Toprek D. Temperature induced phase transformation in Co. Sci. Rep. 2022;12(1):10054. https://doi.org/10.1038/s41598-022-14302-x

20. Santos R.V., Cabrera-Pasca G.A., Costa C.S., Bosch-Santos B., Otubo L., Pereira L.F.D., Correa B.S., Effenberger F.B., Burimova A., Freitas R.S., Carbonari A.W. Crystalline and magnetic properties of CoO nanoparticles locally investigated by using radioactive indium tracer. Sci. Rep. 2021;11(1):21028. https://doi.org/10.1038/s41598-021-99810-y

21. Dubos P.A., Fajoui J., Iskounen N., et al. Temperature effect on strain-induced phase transformation of cobalt. Mat. Lett. 2020;281:128821. https://doi.org/10.1016/j.matlet.2020.128812

22. Shiba N.C., Yao Y., Forbes R.P., Okoye-Chine C.G., Liu X., Hildebrandt D. Role of CoO–Co nanoparticles supported on SiO2 in Fischer–Tropsch synthesis: Evidence for enhanced CO dissociation and olefin hydrogenation. Fuel Process. Technol. 2021;216:106781. https://doi.org/10.1016/j.fuproc.2021.106781

23. Mordkovich V.Z., Sineva L.V., Kulchakovskaya E.V., Asalieva E.Y., Gryaznov K.O., Sinichkina S.G. Catalyst for Fischer–Tropsch Synthesis and Method of its Preparation: RF Pat. RU 2685437 C2. Publ. 18.04.2019 (in Russ.).

24. Ermolaev V.S., Gryaznov K.O., Mitberg E.B., Mordkovich V.Z., Tretyakov V.F. Laboratory and pilot plant fixed-bed reactors for Fischer–Tropsch synthesis: Mathematical modeling and experimental investigation. Chem. Eng. Sci. 2015;138:1–8. https://doi.org/10.1016/j.ces.2015.07.036

25. LÜ J., Huang C., Bai S., Jiang Y., Li Z. Thermal decomposition and cobalt species transformation of carbon nanotubes supported cobalt catalyst for Fischer–Tropsch synthesis. J. Nat. Gas Chem. 2012;21(1):37–42. https://doi.org/10.1016/S1003-9953(11)60330-7

26. Solomonik I.G., Gryaznov K.O., Mitberg E.B., Mordkovich V.Z. Preparation of Raney Cobalt and Identification of Surface Structures Responsible for Catalytic Activity in Fischer–Tropsch Process. Appl. Res. 2023;2:e202200029. https://doi.org/10.1002/appl.202200029


Supplementary files

1. Curves of thermoprogrammed reduction (TPR) after reduction of S2 catalyst for 1 h at different temperatures
Subject
Type Исследовательские инструменты
View (153KB)    
Indexing metadata ▾
  • Activity and selectivity values of the catalyst reduced at 325°C are determined from chromatographic analysis of the products.
  • Low-temperature (325°C) reduction is shown to provide better catalytic parameters due to the implementation of a larger number of highly dispersed cobalt-oxide structures fixed on the hydrated surface of the support, resulting in the appearance of Coδ+ centers with increased activity and selectivity for the formation of C5+ hydrocarbons.

Review

For citations:


Solomonik I.G., Mordkovich V.Z., Gorshkov A.S. Study into optimizing the temperature regime for the reduction of Fischer–Tropsch synthesis catalysts. Fine Chemical Technologies. 2025;20(1):27-36. https://doi.org/10.32362/2410-6593-2025-20-1-27-36. EDN: LXJSOV

Views: 792


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)