Preview

Fine Chemical Technologies

Advanced search

Optical and surface properties of Schiff base ligands and Cu(II) and Co(II) complexes

https://doi.org/10.32362/2410-6593-2024-19-5-452-461

EDN: XAJTFB

Abstract

Objectives. To study the transition of electrons in 1,2-phenyl(4’-carboxy)benzylidene Schiff base ligand and transition metal ions, optical properties, as well as the surface chemistry of supported transition metals using diffuse reflectance spectroscopy (DRS); to study the roughness and morphology of the Schiff base ligand and its complexes using atomic force microscopy (AFM).
Methods. DRS, AFM, and Fourier-transform infrared spectroscopy instruments were used to identify electron transitions, optical properties, and surface morphology in Schiff base ligands and their complexes.
Results. The DRS revealed the d–d transitions and charge transfer shifts of all compounds, and helped identify the structure of the ligand. One of the optical properties studied was the energy gap calculation of the ligand and its complexes. The copper complex exhibited more semiconducting behavior with surface morphology properties such as surface roughness parameters lower than those of the ligand and the cobalt complex. This can be attributed to the smaller size of the copper atom, as well as lower electron transitions compared to the cobalt complex and the square planar bonding shape.
Conclusions. In Schiff base ligands, the reflectance spectrum bands reveal three electron transitions: n→π*, π→π*, and σ→σ* transitions. In cobalt complexes, four transitions are indicated: 4A2(F)→4T1(F), 4A2(F)→4T1(P), charge transfer bands, and tetrahedral geometry. Copper complexes exhibit three transitions: 2B1g→2A1g, 2B1g→2Eg, and charge transfer bands, with a square planar geometry for their structure. The energy gap calculations were 2.42, 2.29, and 2.30 eV, respectively. In the case of the SH ligands, copper complexes, and cobalt complexes, all compounds exhibited semiconductor properties. However, the complexes displayed increased conductivity due to the influence of the metal and coordination structure.

About the Authors

Alaa Adnan Rashad
College of Science, Al-Nahrain University
Iraq

Alaa Adnan Rashad - Assistant Teacher, Master Degree

Jadriya, Baghdad

Scopus Author ID 57209788535

Scopus Author ID 57209788535


Competing Interests:

The authors declare no conflicts of interest



Dina A. Najeeb
College of Science, Al-Nahrain University
Iraq

Dina A. Najeeb - Associate Professor, Master Degree

Jadriya, Baghdad

Scopus Author ID 57189488023


Competing Interests:

The authors declare no conflicts of interest



Shaymaa M. Mahmoud
College of Science, Al-Nahrain University
Iraq

Shaymaa M. Mahmoud - Assistant Teacher, Master Degree

Jadriya, Baghdad

Scopus Author ID 58062049600


Competing Interests:

The authors declare no conflicts of interest



Evon Akram
Forensic DNA Research and Training Center, Al-Nahrain University
Iraq

Evon Akram Abd-Aljabar - Teacher, Master Degree

Jadriya, Baghdad

Scopus Author ID 57191172531


Competing Interests:

The authors declare no conflicts of interest



Khalid Zainulabdeen
College of Science, Al-Nahrain University
Iraq

Khalid Zainulabdeen - Teacher, PhD

Jadriya, Baghdad

Scopus Author ID 57223028460


Competing Interests:

The authors declare no conflicts of interest



Salam Dulaim
College of Science, Al-Nahrain University
Russian Federation

Salam Dulaimi - Teacher, PhD

Jadriya, Baghdad

Scopus Author ID 57220069401


Competing Interests:

The authors declare no conflicts of interest



Rahimi M. Yusop
School of Chemical Science and Food Technology, University Kebangsaan Malaysia
Malaysia

Rahimi M. Yusop -Professor Ts., PhD

43600 Bangi, Selangor

Scopus Author ID 36994895800


Competing Interests:

The authors declare no conflicts of interest



References

1. Weckhuysen B.M., Schoonheydt R.A. Recent progress in diffuse reflectance spectroscopy of supported metal oxide catalysts. Catal. Today. 1999;49:441–451. https://doi.org/10.1016/S0920-5861(98)00458-1

2. Schiff H. Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen. Justus Liebigs Ann. Chem. 1864;131(1):118–119. http://dx.doi.org/10.1002/jlac.18641310113

3. Kajal A., Bala S., Kamboj S., Sharma N., Saini V. Schiff bases: A versatile pharmacophore. J. Catal. 2013;2013:893512. https://doi.org/10.1155/2013/893512

4. Vigato P.A., Tamburini S. The Challenge of Cyclic and Acyclic Schiff Bases and Related Derivatives. Coord. Chem. Rev. 2004;248(17–20):1717–2128. https://doi.org/10.1016/j.cct.2003.09.003

5. More M.S., Joshi P.G., Mishra Y.K., Khanna P.K. Metal complexes driven from Schiff bases and semicarbazones for biomedical and allied applications: a review. Materials Today Chem. 2019;14:100195. https://doi.org/10.1016/j.mtchem.2019.100195

6. Vieira A.P., Wegermann C.A., Ferreira A.M. da C. Comparative studies of Schiff base-copper(II) and zinc(II) complexes regarding their DNA binding ability and cytotoxicity against sarcoma cells. New J. Chem. 2018;42:13169–13179. https://doi.org/10.1039/C7NJ04799A

7. Zhang J., Xu L., Wong W.Y. Energy materials based on metal Schiff base complexes. Coord. Chem. Rev. 2018;355: 180–198. https://doi.org/10.1016/j.ccr.2017.08.007

8. Rana S., Biswas J.P., Sen A., Clemancey M., Blondin G., Latou J.M., Rajaraman G., Maiti D. Selective C−H halogenation over hydroxylation by non-heme iron(iv)-oxo. Chem. Sci. 2018;9:7843–7858. https://doi.org/10.1039/C8SC02053A

9. Kaczmarek M.T., Zabiszak M., Nowak M., Jastrzab R. Lanthanides: Schiff base complexes, applications in cancer diagnosis, therapy, and antibacterial activity. Coord. Chem. Rev. 2018;370:42–54. https://doi.org/10.1016/j.ccr.2018.05.012

10. Silva P.P., Guerra W., Silveira J.N., Ferreira A.M. da C., Bortolotto T., Fischer F.L., Terenzi H., Neves A., Pereira-Maia E.C. Two new ternary complexes of copper(II) with tetracycline or doxycycline and 1,10-phenanthroline and their potential as antitumoral: cytotoxicity and DNA cleavage. Inorg. Chem. 2011;50(14):6414–6424. https://doi.org/10.1021/ic101791r

11. Al Zoubi W., Ko Y.G. Organometallic complexes of Schiff bases: Recent progress in oxidation catalysis. J. Organomet. Chem. 2016;822:173–188. https://doi.org/10.1016/j.jorganchem.2016.08.023

12. Matsunaga S., Shibasaki M. Multimetallic schiff base complexes as cooperative asymmetric catalysts. Synthesis. 2013;45(4):421–437. https://doi.org/10.1055/s-0032-1316846

13. Silva P.P., Guerra W., dos Santos G.C., Fernandes N.G., Silveira J.N., Ferreira A.M. da C., Bortolotto T., Terenzi H., Bortoluzzi A.J., Neves A., Pereira-Maia E.C. Correlation between DNA interactions and cytotoxic activity of four new ternary compounds of copper(II) with N-donor heterocyclic ligands. J. Inorg. Biochem. 2014;132: 67–76. https://doi.org/10.1016/j.jinorgbio.2013.09.014

14. Cozzi P.G. Metal−Salen Schiff base complexes in catalysis: practical aspects. Chem. Soc. Rev. 2004;33(7):410–421. https://doi.org/10.1039/B307853C

15. Gupta K.C., Sutar A.K. Catalytic activities of Schiff base transition metal complexes. Coord. Chem. Rev. 2008; 252(12–14):1420–1450. https://doi.org/10.1016/j.ccr.2007.09.005

16. Matsunaga S., Shibasaki M. Recent advances in cooperative bimetallic asymmetric catalysis: dinuclear Schiff base complexes. Chem. Commun. 2014;50(9):1044–1057. https://doi.org/10.1039/C3CC47587E

17. Yang J., Shi R., Zhou P., Qiu Q., Li H. Asymmetric Schiff bases derived from diaminomaleonitrile and their metal complexes. J. Mol. Struct. 2016;1106:242−258. https://doi.org/10.1016/j.molstruc.2015.10.092

18. Kostova I., Saso L. Advances in research of Schiff-base metal complexes as potent antioxidants. Curr. Med. Chem. 2013;20(36): 4609–4632. http://dx.doi.org/10.2174/09298673113209990149

19. Erxleben A. Transition metal salen complexes in bioinorganic and medicinal chemistry. Inorg. Chim. Acta. 2018;472:40–57. https://doi.org/10.1016/j.ica.2017.06.060

20. Lee S.J., Lee S.W. Cd(II), Ni(II), and Co(II) complexes based on a pyridyl−amine Schiff-base ligand: [M(L)2(NO3)]·(NO3) (M = Cd, Ni, Co), cis-[CoL2Cl2]·(C6H6), and [Co(L)3]·(ClO4)2 (CH3CN)2(H2O) (L = N-(2-pyridylmethylene)benzene-1,4-diamine, (2-py)–CH=N–C6H4–NH2). Polyhedron. 2019;159: 259–264. https://doi.org/10.1016/j.poly.2018.12.003

21. Ibrahim F.M., Najeeb D.A. Synthesis, Characterization and Thermal Studies of Cr(III), Co(II) and Ni(II) Complexes with Schiff Base. Int. J. Res. Pharm. Sci. 2020;11(4):8026–8033.

22. Bartyzel A. Synthesis, thermal study and some properties of N2O4—donor Schiff base and its Mn(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes. J. Therm. Anal. Calorim. 2017;127: 2133–2147. https://doi.org/10.1007/s10973-016-5804-0

23. Marks J.M., Ward T.B., Duncan M.A. Infrared spectroscopy of coordination and solvation in Cu+(C2H4)n (n = 1–9) complexes. Int. J. Mass Spectrometry. 2019;435:107–113. https://doi.org/10.1016/j.ijms.2018.10.008

24. Munshi M.U., Martens J., Berden G., Oomens J. Gas-Phase Infrared Ion Spectroscopy Characterization of Cu(II/I)Cyclam and Cu(II/I)2,2′-Bipyridine Redox Pairs. J. Phys. Chem. A. 2019;123(19):4149–4157. https://doi.org/10.1021/acs.jpca.9b00793

25. Shaalan N., Akram E., Adil D., Ali A.A. Synthesis and Spectroscopic Studies of Metal Complexes with Schiff Bases Derived from 2-[5-(Pyridin-2-Ylmethylene)-Amino]1,3,4-Thiadiazol-2-Yl-Phenol. Journal of Al-Nahrain University-Science ( ANJS). 2018;1(1):37–42. https://anjs.edu.iq/index.php/anjs/article/view/2011

26. Devkota L., SantaLucia D.J., Wheaton A.M., Pienkos A.J., Lindeman S.V., Krzystek J., Ozerov M., Berry J.F., Telser J., Fiedler A.T. Spectroscopic and Magnetic Studies of Co(II) Scorpionate Complexes: Is There a Halide Effect on Magnetic Anisotropy? Inorg. Chem. 2023;62(15):5984–6002. https://doi.org/10.1021/acs.inorgchem.2c04468

27. More P.S., Mehta B.H. Structural Elucidation of Transition Metal Complexes of the Schiff Base of 5-Nitro Salicylaldehyde and Anthranalic Acid Using 1H NMR, Thermal Analysis, Diffused Reflectance and ESR Data. Int. Lett. Chem. Phys. Astron. 2015;48:1–13. https://doi.org/10.18052/www.scipress.com/ILCPA.48.1

28. Najeeb D.A. Synthesis, Characterization and Theoretical Studies of Transition Metal Complexes of 1,2Phenyl(4-Carboxy)Benzylidene. Int. J. Pharm. Sci. Rev. Res. 2016;38(1):223–226.

29. Tafazzoli A., Keypour H., Farida S.H.M., Ahmadvand Z., Gable R.W. Synthesis, biological activities and theoretical studies of a new macroacyclic Schiff base ligand and its related Co(II), Ni(II), and Cu(II) complexes: The X-ray crystal structure of the Co(II) complex. J. Mol. Struct. 2023;1276:134770. https://doi.org/10.1016/j.molstruc.2022.134770

30. Lian R., Ou M., Guan H., Cui J., Zhao Z., Liu L., Chen X., Jiao Ch. Cu(Ⅱ) and Co(Ⅱ) complexes decorated ammonium polyphosphate as co-curing agents on improving fire safety and mechanical properties of epoxy-based building coatings. Constr. Build. Mater. 2023;389:131786. https://doi.org/10.1016/j.conbuildmat.2023.131786

31. Rashad A., Ibrahim F., Ahmed A., Salman E., Akram E. Synthesis and photophysical study of divalent complexes of chelating Schiff base. Baghdad J. Biochem. Appl. Biol. Sci. 2020;1(01):5–17. https://bjbabs.org/index.php/bjbabs/article/view/27

32. More P.S., Mehta B.H. 1H NMR, Diffused Reflectance, Thermal Studies, ESR and Anti-Microbial Activities of Schiff Base Derived from 5-Nitro Salicylaldehyde and p-Anisidine. Int. Lett. Chem. Phys. Astron. 2015;48:14–26. http://dx.doi.org/10.18052/www.scipress.com/ILCPA.48.14

33. Uddin E., Bitu N.A., Asraf A., et al. An Updated Perspective of Nano Schiff Base Complexes: Synthesis, Catalytic, Electrochemical, Optical, Crystalline Features and Pharmacological Activities. Rev. Adv. Chem. 2022;12:57–95. https://doi.org/10.1134/S2634827622010056

34. Kanwal A., Parveen B., Ashraf R., Haider N., Ali K.G. A review on synthesis and applications of some selected Schiff bases with their transition metal complexes. J. Coord. Chem. 2022; 75(19–24):942. https://doi.org/10.1080/00958972.2022.2138364

35. Ravindra N.M., Ganapathy P., Choi J. Energy gap–refractive index relations in semiconductors – An overview. Infrared Phys. Technol. 2007;50(1):21–29. https://doi.org/10.1016/j.infrared.2006.04.001

36. Myrick M.L., Simcock M.N., Baranowski M., Brooke H., Morgan S.L., McCutcheon J.N. The Kubelka-Munk diffuse reflectance formula revisited. Appl. Spectrosc. Rev. 2011;46(2):140–165. https://doi.org/10.1080/05704928.2010.537004


Supplementary files

1. Steps of copper complex preparation
Subject
Type Research Instrument
View (271KB)    
Indexing metadata ▾
  • The transition of electrons in 1,2-phenyl(4’-carboxy)benzylidene Schiff base ligand and transition metal ions, optical properties, as well as the surface chemistry of supported transition metals were studied using diffuse reflectance spectroscopy.
  • The roughness and morphology of the Schiff base ligand and its complexes were studied using atomic force microscopy.
  • In Schiff base ligands, the reflectance spectrum bands reveal three electron transitions: n→π*, π→π*, and σ→σ* transitions.
  • In the case of the SH ligands, copper complexes, and cobalt complexes, all compounds exhibited semiconductor properties. However, the complexes displayed increased conductivity due to the influence of the metal and coordination structure.

Review

For citations:


Rashad A.A., Najeeb D.A., Mahmoud Sh.M., Akram E., Zainulabdeen Kh., Dulaim S., Yusop R.M. Optical and surface properties of Schiff base ligands and Cu(II) and Co(II) complexes. Fine Chemical Technologies. 2024;19(5):452-461. https://doi.org/10.32362/2410-6593-2024-19-5-452-461. EDN: XAJTFB

Views: 993


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)