Preview

Fine Chemical Technologies

Advanced search

Development of a new inversion-voltammetric technique in determining inorganic iodine in Laminariae thalli L. for the quality control of raw materials in factory laboratories

https://doi.org/10.32362/2410-6593-2024-19-4-372-383

EDN: CNMDML

Abstract

Objectives. To develop and validate a methodology for determining inorganic iodine in Laminariae thalli L., corresponding to the norms of the State Pharmacopoeia of the Russian Federation, 15th edition (SPh 15). The methodology needs to be valid and suitable for the quality control of pharmaceutical raw materials in factory laboratories.

Methods. Cathode inversion voltammetry was used as an instrumental method for determining inorganic iodine using a graphite electrode capable of sorbing electroactive ion associates of surfactant–iodine.

Results. When compared with the titrimetric technique recommended by SPh 15, the proposed technique is more selective, sensitive and less time-consuming. The efficiency and metrological characteristics of the technique were confirmed by validation in accordance with the requirements of SPh 15.

Conclusion. The paper presents a new method for determining the gross content of inorganic iodine in Laminariae thalli L. This technique can be used not only in scientific research, but also in the routine quality control of medicinal plant raw materials in control and analytical laboratories engaged in pharmaceutical quality control.

About the Authors

A. V. Nikulin
MIREA — Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Alexander V. Nikulin - Dr. Sci.(Pharm.) Associate Professor, I.P. Alimarin Department of Analytical Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies, Scopus Author ID 57194137763.

86, Vernadskogo pr., Moscow, 119571


Competing Interests:

The authors declare no conflicts of interest



L. Yu. Martynov
MIREA — Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Leonid Yu. Martynov - Cand. Sci.(Chem.), Associate Professor, I.P. Alimarin Department of Analytical Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies, Scopus Author ID 56084953700.

86, Vernadskogo pr., Moscow, 119571


Competing Interests:

The authors declare no conflicts of interest



R. S. Gabaeva
MIREA — Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Ramnat S. Gabaeva - Master Student, M.V. Lomonosov Institute of Fine Chemical Technologies.

86, Vernadskogo pr., Moscow, 119571


Competing Interests:

The authors declare no conflicts of interest



M. A. Lazov
MIREA — Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Mikhail A. Lazov - Cand. Sci. (Chem.), Assistant Professor, I.P. Alimarin Department of Analytical Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies, Scopus Author ID 56466030700.

86, Vernadskogo pr., Moscow, 119571


Competing Interests:

The authors declare no conflicts of interest



References

1. Ahad F., Ganie S.A. Iodine, Iodine metabolism and Iodine deficiency disorders revisited. Indian J. Endocrinol. Metab. 2010;14(1):13–17. https://pubmed.ncbi.nlm.nih.gov/21448409

2. Swanson C.A., Pearce E.N. Iodine insufficiency: a global health problem? Adv. Nutr. 2013;4(5):533–535. https://doi.org/10.3945/an.113.004192

3. Haldimann M., Alt A., Blanc A., Blondeau K. Iodine content of food groups. J. Food Compos. Anal. 2005;18(6):461–471. https://doi.org/10.1016/j.jfca.2004.06.003

4. Eftychia G.K., Roupas N.D., Markou K.B. Effect of excess iodine intake on thyroid on human health. Minerva Med. 2017;108(2): 136–146. https://doi.org/10.23736/s0026-4806.17.04923-0

5. Kapil U. Health consequences of iodine deficiency. Sultan Qaboos Univ. Med. J. 2007;7(3):267–272. https://pubmed.ncbi.nlm.nih.gov/21748117/

6. Thilly C.H., Vanderpas J.B., Bebe N., Ntambue K., Contempre B., Swennen B., Moreno-Reyes R., Bourdoux P., Delange F. Iodine deficiency, other trace elements, and goitrogenic factors in the etiopathogeny of iodine deficiency disorders (IDD). Biol. Trace Elem. Res. 1992;32:229–243. https://doi.org/10.1007/bf02784606

7. Delange F. The role of iodine in brain development. Proc. Nutr. Soc. 2000;59(1):75–79. https://doi.org/10.1017/s0029665100000094

8. Morreale de Escobar G., Obregón M.J., Escobar del Rey F. Role of thyroid hormone during early brain development. Eur. J. Endocrinol. 2004;151(3):U25–U37. https://doi.org/10.1530/eje.0.151u025

9. Zimmermann M.B. Iodine deficiency. Endocrin. Rev. 2009;30(4):376–408. https://doi.org/10.1210/er.2009-0011

10. Lazarus J.H. The importance of iodine in public health. Environ. Geochem. Health. 2015;37:605–618. https://doi.org/10.1007/s10653-015-9681-4

11. Nerhus I., Odland M., Kjellevold M., Midtbø L.K., Markhus M.W., Graff I.E., Lie Ø., Kvestad I., Frøyland L., Dahl L., Øyen J. Iodine status in Norwegian preschool children and associations with dietary iodine sources: the FINS-KIDS study. Eur. J. Nutr. 2019;58:2219–2227. https://doi.org/10.1007/s00394-018-1768-0

12. Müssig K. Iodine-induced toxic effects due to seaweed consumption. Comprehensive handbook of iodine. 2009:897–908. https://doi.org/10.1016/B978-0-12-3741356.00093-5

13. Smyth P.P.A. Iodine, seaweed, and the thyroid. Eur. Thyroid J. 2021;10(2):101–108. https://doi.org/10.1159/000512971

14. Martinelango P.K., Tian K., Dasgupta P.K. Perchlorate in seawater: bioconcentration of iodide and perchlorate by various seaweed species. Anal. Chim. Acta. 2006;567(1): 100–107. https://doi.org/10.1016/j.aca.2006.02.015

15. Yang M., Her N., Ryu J., Yoon Y. Determination of perchlorate and iodide concentrations in edible seaweeds. Int. J. Environ. Sci. Technol. 2014;11:565–570. https://doi.org/10.1007/s13762-013-0263-7

16. Leblanc C., Colin C., Cosse A., Delage L., La Barre S., Morin P., Fiévet B., Voiseux C., Ambroise Y., Verhaeghe E., Amouroux D., Donard O., Tessier E., Potine P. Iodine transfers in the coastal marine environment: the key role of brown algae and of their vanadium-dependent haloperoxidases. Biochimie. 2006;88(11):1773–1785. https://doi.org/10.1016/j.biochi.2006.09.001

17. Tinggi U., Schoendorfer N., Davies P.S., Scheelings P., Olszowy H. Determination of iodine in selected foods and diets by inductively coupled plasma-mass spectrometry. Pure Appl. Chem. 2011;84(2):291–299. https://doi.org/10.1351/PAC-CON-11-08-03

18. Pröfrock D., Prange A. Inductively coupled plasma– mass spectrometry (ICP-MS) for quantitative analysis in environmental and life sciences: a review of challenges, solutions, and trends. Appl. Spectrosc. 2012;66(8):843–868. https://doi.org/10.1366/12-06681

19. Dyke J.V., Dasgupta P.K., Kirk A.B. Trace iodine quantitation in biological samples by mass spectrometric methods: the optimum internal standard. Talanta. 2009;79(2):235–242. https://doi.org/10.1016/j.talanta.2009.03.038

20. Haldimann M., Zimmerli B., Als C., Gerber H. Direct determination of urinary iodine by inductively coupled plasma mass spectrometry using isotope dilution with iodine-129. Clin. Chem. 1998;44(4):817–824. https://doi.org/10.1093/clinchem/44.4.817

21. Shelor C.P., Dasgupta P.K. Review of analytical methods for the quantification of iodine in complex matrices. Anal. Chim. Acta. 2011;702(1):16–36. https://doi.org/10.1016/j.aca.2011.05.039

22. Bellanger J.R., Tressol J.C., Piel H.P. A semi-automated method for the determination of iodine in plants. Ann. Rech. Vet. 1979;10(1):113–118. https://pubmed.ncbi.nlm.nih.gov/539772/

23. Fischer P.W., L’abbé M.R. Acid digestion determination of iodine in foods. J. Assoc. Off. Anal. Chem. 1981;64(1):71–74. https://doi.org/10.1093/jaoac/64.1.71

24. Fischer P.W., L’Abbé M.R., Giroux A. Colorimetric determination of total iodine in foods by iodide-catalyzed reduction of Ce+4. J. Assoc. Off. Anal. Chem. 1986;69(4): 687–689. https://doi.org/10.1093/jaoac/69.4.687

25. Sandell E.B., Kolthoff I.M. Micro determination of iodine by a catalytic method. Microchim. Acta. 1937;1:9–25. https://doi.org/10.1007/BF01476194

26. May W., Wu D., Eastman C., Bourdoux P., Maberly G. Evaluation of automated urinary iodine methods: problems of interfering substances identified. Clin. Chem. 1990;36(6): 865–869. https://doi.org/10.1093/clinchem/36.6.865

27. Pupyshev A.A., Surikov V.T. Mass-spektrometriya s induktivno svyazannoi plazmoi. Obrazovanie ionov (Inductively Coupled Plasma Mass Spectrometry: Formation of Ions). Yekaterinburg: Ural Otd. Ross. Akad. Nauk; 2006. 237 p. (in Russ.).

28. Poluzzi V., Cavalchi B., Mazzoli A., Alberini G., Lutman A., Coan P., Ciani I., Trentini P., Ascanelli M., Davoli V. Comparison of two different inductively coupled plasma mass spectrometric procedures and high-performance liquid chromatography with electrochemical detection in the determination of iodine in urine. J. Anal. At. Spectrom. 1996;11(9):731–734. https://doi.org/10.1039/JA9961100731

29. Santamaria-Fernandez R., Evans P., Wolff-Briche C.S., Hearn R. A high accuracy primary ratio method for the determination of iodine in complex matrices by double isotope dilution using MC-ICPMS and 129I spike. J. Anal. At. Spectrom. 2006;21(4):413–421. https://doi.org/10.1039/B516767A

30. Vydra F., Shtulik K., Yulakova E. Inversionnaya vol’tamperometriya (Inversion Voltammetry). Moscow: Mir; 1980. 278 p. (in Russ.).

31. Deryabina V.I., Slepchenko G.B., Fam K.N., Kirillova M.E. Method for quantitative determination of iodine through stripping voltammetry: RF Pat. 2459199. Publ. 20.08.2012 (in Russ.).

32. Espada-Bellido E., Bi Z., Salaün P., van den Berg C.M.G. Determination of iodide and total iodine in estuarine waters by cathodic stripping voltammetry using a vibrating silver amalgam microwire electrode. Talanta. 2017;174:165–170. https://doi.org/10.1016/j.talanta.2017.06.004

33. Bibi S., Zaman M.I., Niaz A., Tariq M., Khan S.Z., Zulfiqar A., Rahim A., Jan S. Electrocatalytic response of chitosan modified multiwall carbon nanotube paste electrode toward iodode: A facile voltametric method for determination of iodide in biological sample. Mater. Chem. Phys. 2023;294:126984. https://doi.org/10.1016/j.matchemphys.2022.126984

34. Cunha-Silva H., Arcos-Martinez M.J. Cathodic stripping voltametric determination of iodide using disposable sensors. Talanta. 2019;199:262–269. https://doi.org/10.1016/j.talanta.2019.02.061

35. Elupov V.Yu., Denisov V.L. Method for production of laminaria extract with increased iodine content: RF Pat. 2311043. Publ. 27.11.2007 (in Russ.).

36. Podkorytova A.V. Marine algae – macrophytes and herbs. Moscow: VNIRO; 2005. 174 p. (in Russ.).


Supplementary files

1. Voltammograms of the test solution
Subject
Type Исследовательские инструменты
View (489KB)    
Indexing metadata ▾
  • The paper presents a new method for determining the gross content of inorganic iodine in Laminariae thalli L.
  • This technique can be used not only in scientific research, but also in the routine quality control of medicinal plant raw materials in control and analytical laboratories engaged in pharmaceutical quality control.

Review

For citations:


Nikulin A.V., Martynov L.Yu., Gabaeva R.S., Lazov M.A. Development of a new inversion-voltammetric technique in determining inorganic iodine in Laminariae thalli L. for the quality control of raw materials in factory laboratories. Fine Chemical Technologies. 2024;19(4):372-383. https://doi.org/10.32362/2410-6593-2024-19-4-372-383. EDN: CNMDML

Views: 653


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)