Preview

Fine Chemical Technologies

Advanced search

Cold sintering of α- and γ-modifications of aluminum oxohydroxides: A low-temperature route to porous corundum ceramics

https://doi.org/10.32362/2410-6593-2024-19-4-337-349

EDN: KPTKXT

Abstract

Objectives. To obtain porous corundum ceramics using an innovative cold sintering process starting from different phase modifications of aluminum oxohydroxide — boehmite γ-AlOOH and diaspore α-AlOOH; to study the phase and structural properties of the resulting materials; and to assess their permeability to water.

Results. Cold sintering enables the formation of single-phase corundum ceramics with an open porosity of 47.9% directly from the initial boehmite powder with the addition of 5 wt % corundum in the presence of 20 wt % water at a temperature of 450°C, mechanical pressure of 220 MPa, and isothermal exposure for 30 min. Under the same conditions of cold sintering, a mixture of diaspore and boehmite was transformed into α-AlOOH ceramics. This then turned into corundum with an open porosity of 39% when calcined in air at 600°C for 1 h. The resulting materials had permeability for pure water above 5000 L/(m2∙h∙bar).

Conclusions. Cold sintering is a promising approach to producing porous corundum ceramics which can be used in filtration systems. Compared to traditional ceramic technology, the new approach reduces energy, time, and labor costs in the material manufacturing. It also eliminates the need to use auxiliary substances (binders, pore-forming agents, etc.).

About the Authors

A. A. Kholodkova
State University of Management
Russian Federation

Anastasia A. Kholodkova - Cand. Sci. (Chem.), Senior Researcher, Department of Scientific Research Coordination, Scopus Author ID 56530861400, Researcher ID M-2169-2016.

99, Ryazansky pr., Moscow, 109545


Competing Interests:

The authors declare no obvious and potential conflicts of interest related to the publication of this article



M. V. Kornyushin
State University of Management
Russian Federation

Maksim V. Kornyushin - Junior Researcher, Department of Scientific Research Coordination, Scopus Author ID 57219230569.

99, Ryazansky pr., Moscow, 109545


Competing Interests:

The authors declare no obvious and potential conflicts of interest related to the publication of this article



A. V. Smirnov
MIREA – Russian Technological University
Russian Federation

Andrey V. Smirnov - Cand. Sci. (Eng.), Head of the Laboratory of Ceramic Materials and Technologies, ResearcherID J-2763-2017, Scopus Author ID 56970389000.

86, Vernadskogo pr., Moscow, 119571


Competing Interests:

The authors declare no obvious and potential conflicts of interest related to the publication of this article



L. A. Arbanas
MIREA – Russian Technological University
Russian Federation

Levko A. Arbanas - Research Intern, Laboratory of Ceramic Materials and Technologies, Scopus Author ID 58523360800.

86, Vernadskogo pr., Moscow, 119571


Competing Interests:

The authors declare no obvious and potential conflicts of interest related to the publication of this article



A. N. Khrustalev
MIREA – Russian Technological University
Russian Federation

Arseniy N. Khrustalev - Engineer, Laboratory of Ceramic Materials and Technologies, RSCI SPIN-code 6804-4093.

86, Vernadskogo pr., Moscow, 119571


Competing Interests:

The authors declare no obvious and potential conflicts of interest related to the publication of this article



V. E. Bazarova
MIREA – Russian Technological University
Russian Federation

Viktoria E. Bazarova - Engineer, Laboratory of Ceramic Materials and Technologies.

86, Vernadskogo pr., Moscow, 119571


Competing Interests:

The authors declare no obvious and potential conflicts of interest related to the publication of this article



A. V. Shumyantsev
M.V. Lomonosov Moscow State University; All-Russian Institute for Scientific and Technical Information
Russian Federation

Aleksey V. Shumyantsev - Cand. Sci. (Chem.), Researcher, Laboratory of Catalysis and Gas Electrochemistry, Chemistry Department, Lomonosov MSU; Chief Specialist of the Department, RISTI. Scopus Author ID 57193644084.

1-9, Leninskie Gory, Moscow, 119991; 20, Usievicha ul., Moscow, 125190


Competing Interests:

The authors declare no obvious and potential conflicts of interest related to the publication of this article



S. Yu. Kupreenko
M.V. Lomonosov Moscow State University
Russian Federation

Stepan Yu. Kupreenko - Cand. Sci. (Phys.-Math.), Senior Researcher, Laboratory of Catalysis and Gas Electrochemistry, Chemistry Department, Scopus Author ID 54784525900.

1-9, Leninskie Gory, Moscow, 119991


Competing Interests:

The authors declare no obvious and potential conflicts of interest related to the publication of this article



Yu. D. Ivakin
M.V. Lomonosov Moscow State University; MIREA – Russian Technological University
Russian Federation

Yurii D. Ivakin - Cand. Sci. (Chem.), Senior Researcher, Laboratory of Catalysis and Gas Electrochemistry, Chemistry Department, Lomonosov MSU; Senior Researcher, Mobile Solutions Engineering Center, MIREA – RTU. Scopus Author ID 6603058433, RSCI SPIN-code 7337-4173.

1-9, Leninskie Gory, Moscow, 119991; 86, Vernadskogo pr., Moscow, 119571


Competing Interests:

The authors declare no obvious and potential conflicts of interest related to the publication of this article



References

1. Amrute A.P., Jeske K., Łodziana Z., Prieto G., Schüth F. Hydrothermal Stability of High-Surface-Area α-Al2O3 and Its Use as a Support for Hydrothermally Stable Fischer–Tropsch Synthesis Catalysts. Chem. Mater. 2020;32(10):4369–4374. https://doi.org/10.1021/acs.chemmater.0c01587

2. Huang C.L., Wang J.J., Huang C.Y. Sintering behavior and microwave dielectric properties of nano alpha-alumina. Mater. Lett. 2005;59(28):3746–3749. https://doi.org/10.1016/j.matlet.2005.06.053

3. Asimakopoulou A., Gkekas I., Kastrinaki G., Prigione A., Zaspalis V.T., Petrakis S. Biocompatibility of α-Al2O3 Ceramic Substrates with Human Neural Precursor Cells. J. Funct. Biomater. 2020;11(3):65. https://doi.org/10.3390/jfb11030065

4. MacKenzie K.J.D., Temuujin J., Okada K. Thermal decomposition of mechanically activated gibbsite. Thermochim. Acta. 1999;327(1–2):103–108. https://doi.org/10.1016/S0040-6031(98)00609-1

5. Xie Y., Kocaefe D., Kocaefe Y., Cheng J., Liu W. The Effect of Novel Synthetic Methods and Parameters Control on Morphology of Nano-alumina Particles. Nanoscale Res. Lett. 2016;11(1):259. https://doi.org/10.1186/s11671-0161472-z

6. Suchanek W.L. Hydrothermal Synthesis of Alpha Alumina (α‐Al2O3) Powders: Study of the Processing Variables and Growth Mechanisms. J. Am. Ceram. Soc. 2010;93(2): 399–412. https://doi.org/10.1111/j.1551-2916.2009.03399.x

7. Ivakin Yu.D., Danchevskaya M.N., Muravieva G.P. Induced formation of corundum crystals in supercritical water fluid. Russ. J. Phys. Chem. B. 2015;9(7):1082–1094. https://doi.org/10.1134/S1990793115070088 [Original Russian Text: Ivakin Yu.D., Danchevskaya M.N., Muravieva G.P. Induced formation of corundum crystals in supercritical water fluid. Sverkhkriticheskie Flyuidy: Teoriya i Praktika. 2014;9(3):36–54 (in Russ.).]

8. Galotta A., Sglavo V.M. The cold sintering process: A review on processing features, densification mechanisms and perspectives. J. Eur. Ceram. Soc. 2021;41(16):1–17. https://doi.org/10.1016/j.jeurceramsoc.2021.09.024

9. Ndayishimiye A., Sengul M.Y., Sada T., Dursun S., Bang S.H., Grady Z.A., et al. Roadmap for densification in cold sintering: Chemical pathways. Open Ceram. 2020;2:100019. https://doi.org/10.1016/j.oceram.2020.100019

10. Huang Y., Huang K., Zhou S., Lin C., Wu X., Gao M., et al. Influence of incongruent dissolution-precipitation on 8YSZ ceramics during cold sintering process. J. Eur. Ceram. Soc. 2022;42(5):2362–2369. https://doi.org/10.1016/j.jeurceramsoc.2021.12.072

11. Ndayishimiye A., Fan Z., Mena-Garcia J., Anderson J.M., Randall C.A. Coalescence in cold sintering: A study on sodium molybdate. Open Ceram. 2022;11:100293. https://doi.org/10.1016/j.oceram.2022.100293

12. Ivakin Yu.D., Smirnov A.V., Kormilitsin M.N., Kholodkova A.A., et al. Effect of Mechanical Pressure on the Recrystallization of Zinc Oxide in a Water Fluid Medium under Cold Sintering. Russ. J. Phys. Chem. B. 2021;15(8): 1228–1250. https://doi.org/10.1134/S1990793121080054 [Original Russian Text: Ivakin Yu.D., Smirnov A.V., Kormilitsin M.N., Kholodkova A.A., Vasin A.A., Kornyushin M.V., Tarasovskii V.P., Rybal’chenko V.V. Effect of Mechanical Pressure on the Recrystallization of Zinc Oxide in a Water Fluid Medium under Cold Sintering. Sverkhkriticheskie Flyuidy: Teoriya i Praktika. 2021;16(1):17–51 (in Russ.). https://doi.org/10.34984/sCFTP.2021.16.1.002 ]

13. Sengul M.Y., Guo J., Randall C.A., van Duin A.C.T. Water‐Mediated Surface Diffusion Mechanism Enables the Cold Sintering Process: A Combined Computational and Experimental Study. Angew. Chem. Int. Ed. 2019;58(36):12420–12424. https://doi.org/10.1002/anie.201904738

14. Kang S., Zhao X., Guo J., Liang J., Sun J., Yang Y, et al. Thermal-assisted cold sintering study of Al2O3 ceramics: Enabled with a soluble γ-Al2O3 intermediate phase. J. Eur. Ceram. Soc. 2023;43(2):478–485. https://doi.org/10.1016/j.jeurceramsoc.2022.10.039

15. Kholodkova A.A., Kornyushin M.V., Pakhomov M.A., Smirnov A.V., Ivakin Y.D. Water-Assisted Cold Sintering of Alumina Ceramics in SPS Conditions. Ceramics. 2023;6(2):1113–1128. https://doi.org/10.3390/ceramics6020066

16. Yamaguchi K., Hashimoto S. Effect of phase transformation in cold sintering of aluminum hydroxide. J. Eur. Ceram Soc. 2024;44(5):2754–2761. https://doi.org/10.1016/j.jeurceramsoc.2023.12.054

17. Kloprogge J.T., Ruan H.D., Frost R.L. Thermal decomposition of bauxite minerals: infrared emission spectroscopy of gibbsite, boehmite and diaspore. J. Mater. Sci. 2002;37(6):1121–1129. https://doi.org/10.1023/A:1014303119055

18. Banerjee J.C., De S.K., Nandi D.N. Diaspore as a Refractory Raw Material. Trans. Indian Ceram. Soc. 1966;25(1):80–84. https://doi.org/10.1080/0371750X.1966.10855557

19. Parida K.M., Pradhan A.C., Das J., Sahu N. Synthesis and characterization of nano-sized porous gammaalumina by control precipitation method. Mater. Chem. Phys. 2009;113(1):244–248. https://doi.org/10.1016/j.matchemphys.2008.07.076

20. He F., Li W., Pang T., Zhou L., Wang C., Liu H., et al. Hydrothermal synthesis of boehmite nanorods from alumina sols. Ceram. Int. 2022;48(13):18035–18047. https://doi.org/10.1016/j.ceramint.2022.02.212

21. Kozerozhets I.V., Panasyuk G.P., Semenov E.A., Avdeeva V.V., Danchevskaya M.N., Simonenko N.P., et al. Recrystallization of nanosized boehmite in an aqueous medium. Powder Technol. 2023;413:118030. https://doi.org/10.1016/j.powtec.2022.118030

22. Egorova S.R., Muhamedyarova A.N., Zhang Yu., Lamberov A.A. Effect of hydrothermal treatment of γ -Al2O3 on boehmite properties. Butlerov Commun. 2017;51(7):102–114 (in Russ.). https://doi.org/10.37952/ROI-jbc-01/17-51-7-102

23. Torkar K. Untersuchungen über Aluminiumhydroxyde und-oxyde, 5. Mitt.: Darstellung von reinstem α-Aluminiumoxyd und Diaspor. Monatshefte für Chemie. 1960;91(5):757–763. https://doi.org/10.1007/BF00929547

24. Carim A.H., Rohrer G.S., Dando N.R., Tzeng S., Rohrer C.L., Perrotta A.J. Conversion of Diaspore to Corundum: A New α‐Alumina Transformation Sequence. J. Am. Ceram. Soc. 1997;80(10):2677–2680. https://doi.org/10.1111/j.1151-2916.1997.tb03171.x

25. Oh C.J., Yi Y.K., Kim S.J., Tran T., Kim M.J. Production of micro-crystalline boehmite from hydrothermal processing of Bayer plant alumina tri-hydrate. Powder Technol. 2013;235:556–562. https://doi.org/10.1016/j.powtec.2012.10.041

26. Santos P.D.S., Coelho A.C.V., Santos H.D.S., Kiyohara P.K. Hydrothermal synthesis of well-crystallised boehmite crystals of various shapes. Mater. Res. 2009;12(4):437–445. http://doi.org/10.1590/S1516-14392009000400012

27. Liu Y., Zhu W., Guan K., Peng C., Wu J. Preparation of high permeable alumina ceramic membrane with good separation performance via UV curing technique. RSC Adv. 2018;8(24):13567–13577. https://doi.org/10.1039/C7RA13195J

28. Zhu J., Fan Y., Xu N. Modified dip-coating method for preparation of pinhole-free ceramic membranes. J. Membr. Sci. 2011;367(1–2):14–20. https://doi.org/10.1016/j.memsci.2010.10.024

29. Ha J.H., Abbas Bukhari S.Z., Lee J., Song I.H., Park C. Preparation processes and characterizations of aluminacoated alumina support layers and alumina-coated natural material-based support layers for microfiltration. Ceram. Int. 2016;42(12):13796–13804. https://doi.org/10.1016/j.ceramint.2016.05.181

30. Naseer D., Ha J.H., Lee J., Song I.H. Preparation of Al2O3 Multichannel Cylindrical-Tube-Type Microfiltration Membrane with Surface Modification. Appl. Sci. 2022;12(16):7993. https://doi.org/10.3390/app12167993

31. Song I.H., Bae B.S., Ha J.H., Lee J. Effect of hydraulic pressure on alumina coating on pore characteristics of flat-sheet ceramic membrane. Ceram. Int. 2017;43(13): 10502–10507. https://doi.org/10.1016/j.ceramint.2017.05.098

32. Feng J., Fan Y., Qi H., Xu N. Co-sintering synthesis of tubular bilayer α-alumina membrane. J. Membr. Sci. 2007; 288(1–2):20–27. https://doi.org/10.1016/j.memsci.2006.09.034


Supplementary files

1. SEM image of Al2O3 powder synthesized by precipitation followed by calcination at 1000С
Subject
Type Исследовательские инструменты
View (276KB)    
Indexing metadata ▾
  • Cold sintering enables the formation of single-phase corundum ceramics with an open porosity of 47.9% directly from the initial boehmite powder with the addition of 5 wt % corundum in the presence of 20 wt % water at a temperature of 450°C, mechanical pressure of 220 MPa, and isothermal exposure for 30 min.
  • Under the same conditions of cold sintering, a mixture of diaspore and boehmite was transformed into α-AlOOH ceramics. This then turned into corundum with an open porosity of 39% when calcined in air at 600°C for 1 h.
  • The resulting materials had permeability for pure water above 5000 L/(m2∙h∙bar).

Review

For citations:


Kholodkova A.A., Kornyushin M.V., Smirnov A.V., Arbanas L.A., Khrustalev A.N., Bazarova V.E., Shumyantsev A.V., Kupreenko S.Yu., Ivakin Yu.D. Cold sintering of α- and γ-modifications of aluminum oxohydroxides: A low-temperature route to porous corundum ceramics. Fine Chemical Technologies. 2024;19(4):337-349. https://doi.org/10.32362/2410-6593-2024-19-4-337-349. EDN: KPTKXT

Views: 827


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)