Preview

Fine Chemical Technologies

Advanced search

Comparison of methods for calculating the enthalpy of vaporization of binary azeotropic mixtures

https://doi.org/10.32362/2410-6593-2024-19-4-279-292

EDN: WXQZSM

Abstract

Objectives. To calculate the molar enthalpy of vaporization of binary homogeneous mixtures based on isothermal and isobaric vapor–liquid equilibrium data, and to compare the results of calculation of molar enthalpy of vaporization by different methods with experimental data.

Methods. Simulation of the vapor–liquid equilibrium of binary systems according to the Non-Random Two Liquid “local compositions” equation and thermodynamic calculations of molar vaporization enthalpies of binary mixtures at different conditions of vapor–liquid equilibrium were used.

Results. Arrays of calculated data were obtained with regard to molar enthalpies of vaporization for 25 compositions of binary azeotropes (isothermal, isobaric conditions of phase equilibrium), and the full range of compositions of the benzene–ethanol system at atmospheric pressure.

Conclusions. The accuracy of thermodynamic methods for calculating the vaporization enthalpy of binary azeotropic mixtures according to vapor–liquid equilibrium data is higher in 85% of cases for isothermal, and in 75% of cases for isobaric conditions. By taking into account the influence of temperature on the activity coefficients of components in the liquid phase, the values of excess molar enthalpy both for azeotrope compositions and for the full concentration range of the benzene–ethanol system under isobaric conditions of liquid–vapor phase equilibrium can be accurately reproduced.

About the Authors

D. A. Ryzhkin
MIREA — Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Dmitry А. Ryzhkin - Postgraduate Student, Department of Chemistry and Technology of Basic Organic Synthesis, M.V. Lomonosov Institute of Fine Chemical Technologies. Scopus Author ID 57223230408, ResearcherID AAU-6583-2021.

86, Vernadskogo pr., Moscow, 119571


Competing Interests:

The authors declare no conflicts of interest



V. M. Raeva
MIREA — Russian Technological University (M.V. Lomonosov Institute of Fine Chemical Technologies)
Russian Federation

Valentina М. Raeva - Cand. Sci. (Eng.), Associate Professor, Department of Chemistry and Technology of Basic Organic Synthesis, Scopus Author ID 6602836975, ResearcherID C-8812-2014.

86, Vernadskogo pr., Moscow, 119571


Competing Interests:

The authors declare no conflicts of interest



References

1. Karapet’yants M.Kh. Khimicheskaya termodinamika (Chemical Thermodynamics). Мoscow: Khimiya; 1975. 583 p. (in Russ.)

2. Black C. Importance of thermophysical data in process simulation. Int. J. Thermophys. 1986;7(4):987–1002. https://doi.org/10.1007/BF00503853

3. Sandler S.I. Thermophysical properties: What have we learned recently, and what do we still need to know? Int. J. Thermophys. 1994;15(6):1013–1035. https://doi.org/10.1007/BF01458812

4. Oscarson J.L., Rowley R.L., Wilding W.V., Izatt R.M. Industrial need for accurate thermophysical data and for reliable prediction methods. J. Therm. Anal. Calorim. 2008;92(2): 465–470. https://doi.org/10.1007/s10973-007-8972-0

5. Solomonov B.N., Varfolomeev M.A., Nagrimanov R.N., Novikov V.B., Zaitsau D.H., Verevkin S.P. Solution calorimetry as a complementary tool for the determination of enthalpies of vaporization and sublimation of low volatile compounds at 298.15 K. Thermochimica Acta. 2014;589:164–173. https://doi.org/10.1016/j.tca.2014.05.033

6. Yu D., Chen Z. A theoretical analysis on enthalpy of vaporization: Temperature dependence and singularity at the critical state. Fluid Phase Equil. 2020;516:112611. https://doi.org/10.1016/j.fluid.2020.112611

7. Solomonov B.N., Yagofarov M.I. Compensation relationship in thermodynamics of solvation and vaporization: Features and applications. II. Hydrogen-bonded systems. J. Mol. Liq. 2023;372(2):121205. https://doi.org/10.1016/j.molliq.2023.121205

8. Tyrer D. CLXXXVI. Latent heats of vaporization of mixed liquids. Part I. J. Chem. Soc., Trans. 1911;99:1633–1645. https://doi.org/10.1039/CT9119901633

9. Shivabasappа K.L., Nirguna Babu P., Jagannadha Rao Y. Enthalpy of mixing and heat of vaporization of ethyl acetate with benzene and toluene at 298.15 K and 308.15 K. Braz. J. Chem. Eng. 2008;25(1):167–174. https://doi.org/10.1590/s0104-66322008000100017

10. Zakharov M.K., Egorov A.V., Podmetenny A.A. Liquid mixtures separation and heat consumption in the process of distillation. Tonk. Khim. Tekhnol. = Fine Chem. Technol. 2021;16(1):7–15 (Russ., Eng.). https://doi.org/10.32362/24106593-2021-16-1-7-15

11. Pashchenko L.L., Druzhinina A.I. Enthalpy of vaporization measurements by calorimetric techniques. J. Therm. Anal. Calorim. 2018;133(2):1173–1179. https://doi.org/10.1007/s10973-018-7370-0

12. Vicencio L.A., López-Porfiri P., de la Fuente J.C. Vapour pressure and vaporisation enthalpy for two key apple odorants, ethyl butyrate and ethyl hexanoate, at pressures from (15 to 105) kPa. J. Chem. Тhermodyn. 2020;142:105982. https://doi.org/10.1016/j.jct.2019.105982

13. Abdullah R.S., Solomonov B.N.. Sublimation/vaporization and solvation enthalpies of monosubstituted pyridine derivatives. Chem. Thermodyn. Therm. Anal. 2022;8(20):100087. https://doi.org/10.1016/j.ctta.2022.100087

14. Dong J.-Q., Lin R.-S., Yen W.-H. Heats of vaporization and gaseous molar heat capacities of ethanol and the binary mixture of ethanol and benzene. Can. J. Chem. 1988;66(4):783–790. https://doi.org/10.1139/v88-136

15. Tamir A. Prediction of latent heat of vaporization of multicomponent mixtures. Fluid Phase Equil. 1982;8(2): 131–147. https://doi.org/10.1016/0378-3812(82)80031-9

16. Ito T.,YamaguchiT.,Akasaka R. Heat of vaporization of mixtures. Heat Transfer Japanese Res. 1996;25(1):12–24. https://doi.org/10.1002/(SICI)1520-6556(1996)25:1%3C12::AIDHTJ2%3E3.0.CO;2-1

17. Marchelli G., Ingenmey J., Hollóczki O., Chaumont A., Kirchner B. Hydrogen-bonding and vaporization thermodynamics in hexafluoroisopropanol-acetone and -methanol mixtures. A Joined cluster analysis and molecular dynamic study. ChemPhysChem. 2022;23(1):e202100620. https://doi.org/10.1002/cphc.202100620

18. Swietoslawski W., Zielenkiewicz A. Vaporization enthalpy of the homologous series of binary azeotropes. Rocz. Chem. 1958;32:913–922.

19. Tamir A. Compilation and correlation of binary azeotropic data. Fluid Phase Equil. 1981;5(3–4):199–206. https://doi.org/10.1016/0378-3812(80)80057-4

20. Zherin I.I. Halogen fluorides in nuclear fuel technology. Thermodynamics of phase equilibria in systems containing UF6, BrF3, IF5, and HF. Izvestiya Tomskogo Politekhnicheskogo Univesiteta = Bulletin of the Tomsk Polytechnic University. 2003;306(6):8–11 (in Russ.).

21. Neilson E.F., White D. The heat of vaporization and solution of a binary mixture of fluorocarbons. J. Phys. Chem. 1959;63(9):1363–1365. https://doi.org/10.1021/j150579a005

22. Pandey J.D., Srivastava T., Chandra P., Prashant R., Dwivedi P.K. Estimation of cohesive forces, energy of vaporization, heat of vaporization, cohesive energy density, solubility parameter and Van der Waals constant of binary liquid mixtures using generalized hole theory. Indian J. Chem. 2007;46A:1605–1610.

23. Bedretdinov F., Tsvetov N., Raeva V., Chelyuskina T. Research of the properties of binary biazeotropic mixtures. In: Proc. of the 46th International Conference of the Slovak Society of Chemical Engineering. Tatranské Matliare, High Tatras, Slovakia May 20–23, 2019. Bratislava; 2019. P. 171.

24. Raeva V.M. Vaporization heat of binary mixtures. Tonk. Khim. Tekhnol. = Fine Chem. Technol. 2013;8(1):43–50 (in Russ.).

25. Lenoir J.M., Hipkin H.G. Measured enthalpies of eight hydrocarbon fractions. J. Chem. Eng. Data. 1973;18(2): 195–202. https://doi.org/10.1021/je60057a026

26. Grigoriev B., Alexandrov I., Gerasimov A. Application of multiparameter fundamental equations of state to predict the thermodynamic properties and phase equilibria of technological oil fractions. Fuel. 2018;215:80–89. https://doi.org/10.1016/j.fuel.2017.11.022

27. Tatar A., Barati-Harooni A., Partovi M., NajafiMarghmaleki A., et al. An accurate model for predictions of vaporization enthalpies of hydrocarbons and petroleum fractions. J. Mol. Liq. 2016;220:192–199. https://doi.org/10.1016/j.molliq.2016.04.069

28. Balabin R.M., Syunyaev R.Z., Karpov S.A.. Molar enthalpy of vaporization of ethanol–gasoline mixtures and their colloid state. Fuel. 2007;86(3):323–327. https://doi.org/10.1016/j.fuel.2006.08.008

29. Gautam A., Kumar A.A.. Determination of important biodiesel properties based on fuel temperature correlations for application in a locomotive engine. Fuel. 2015;142:289–302. https://doi.org/10.1016/j.fuel.2014.10.032

30. Abernathy S.M., Brown K.R. Predicting the enthalpy of vaporization and calculating the entropy of vaporization of 87 octane gasoline using vapor pressure. Open Access Library Journal (OALib. Journal). 2016;3(e2954):1–11. http://doi.org/10.4236/oalib.1102954

31. Akasaka R., Yamaguchi T., Ito T. Practical and direct expressions of the heat of vaporization for mixtures. Chem. Eng. Science. 2005;60(16):4369–4376. https://doi.org/10.1016/j.ces.2005.03.005

32. Benkouider A.M., Kessas R., Guella S., Yahiaoui A., Bagui F. Estimation of the enthalpy of vaporization of organic components as a function of temperature using a new group contribution method. J. Mol. Liq. 2014;194:48–56. https://doi.org/10.1016/j.molliq.2014.01.006

33. Bolmatenkov D.N., Yagofarov M.I., Notfullin A.A., Solomonov B.N. Calculation of the vaporization enthalpies of alkylaromatic hydrocarbons as a function of temperature from their molecular structure. Fluid Phase Equil. 2022;554:113303. https://doi.org/10.1016/j.fluid.2021.113303

34. Bolmatenkov D.N.,Yagofarov M.I., Valiakhmetov T.F., Rodionov N.O., Solomonov B.N. Vaporization enthalpies of benzanthrone, 1-nitropyrene, and 4-methoxy-1naphthonitrile: Prediction and experiment. J. Chem. Thermodyn. 2022;168:106744. https://doi.org/10.1016/j.jct.2022.106744

35. Bolmatenkov D.N., Yagofarov M.I., Sokolov A.A., Solomonov B.N. Vaporization enthalpies of self-associated aromatic compounds at 298.15 K: A review of existing data and the features of heat capacity correction. Part I. Phenols. Thermochimica Acta. 2023;721:179455. https://doi.org/10.1016/j.tca.2023.179455

36. Arutionov B.A., Elsadig Y.A. Thermodynamic method of calculation of heat of steam formation for binary mixes. Tonk. Khim. Tekhnol. = Fine Chem. Technol. 2010;5(5):36–39 (in Russ.).

37. Arutionov B.A., Elsadig Y.A., Ausheva E.V. Temperature dependence of heat of vaporization of pure hydrocarbons and their binary mixtures. Tonk. Khim. Tekhnol. = Fine Chem. Technol. 2010;5(5):40–42 (in Russ.).

38. Arutyunov B.A., Rytova E.V., Raeva V.M., et. al. Methods for calculating the evaporation heats of hydrocarbons and their mixtures in a wide temperature range. Theor. Found. Chem. Eng. 2017;51(5):742–751. https://doi.org/10.1134/s0040579517050268 [Original Russian Text: Arutyunov B.A., Rytova E.V., Raeva V.M., Frolkova A.K. Methods for calculating the heat of vaporization of hydrocarbons and their mixtures in a wide temperature range. Teoreticheskie Osnovy Khimicheskoi Tekhnologii. 2017;51(5):595–604 (in Russ.). https://doi.org/10.7868/S0040357117050025 ]

39. Tamir A., Dragoescu C., Apelblat A., Wisniak J. Heats of vaporization and vapor–liquid equilibria in associated solutions containing formic acid, acetic acid, propionic acid and carbon tetrachloride. Fluid Phase Equil. 1983;10(1):9–42. https://doi.org/10.1016/0378-3812(83)80002-8

40. Solomonov B.N., Yagofarov M.I., Nagrimanov R.N. Additivity of vaporization enthalpy: Group and molecular contributions exemplified by alkylaromatic compounds and their derivatives. J. Mol. Liq. 2021;342:117472. https://doi.org/10.1016/j.molliq.2021.117472

41. Solomonov B.N., Yagofarov M.I. Compensation relationship in thermodynamics of solvation and vaporization: Features and applications. II. Hydrogen-bonded systems. J. Mol. Liq. 2023;372:121205. https://doi.org/10.1016/j.molliq.2023.121205

42. Morachevskii A.G., Smirnova N.A., Alekseeva M.V., Balashova I.M., Viktorov A.I., Kuranov G.L., Piotrovskaya E.M., Pukinskii I.B. Termodinamika ravnovesiya zhidkost’–par (Thermodynamics of Liquid–Vapor Equilibrium). Leningrad: Khimiya; 1989. 344 p. (in Russ.).

43. Reid R.C., Prausnitz J.M., Sherwood T.K. Svoistva gazov i zhidkostei (The Properties of Gases and Liquids); transl. from Engl. Leningrad: Khimiya; 1982. 592 p. (in Russ.). [Reid R.C., Prausnitz J.M., Sherwood T.K. The Properties of Gases and Liquids. NY: McGraw-Hill; 1977. 710 p.]

44. Walas S.M. Fazovye ravnovesiya v khimicheskoi tekhnologii (Phase Equilibria in Chemical Engineering): in 2 v.; transl. from Engl. Мoscow: Mir; 1989. V. 1. 304 p. (in Russ.). [Walas S.M. Phase Equilibria in Chemical Engineering. Oxford: Butterworth-Heinemann Publ., 1985. 671 p.]

45. Raeva V.M., Anisimov A.V., Ryzhkin D.A. Calculation of vaporization enthalpies of a benzene–cyclohexane system. Russ. Chem. Bull. 2021;70(4):715–721. https://doi.org/10.1007/s11172-021-3141-3 [Original Russian Text: Raeva V.M., Anisimov A.V., Ryzhkin D.A. Calculation of vaporization enthalpies of a benzene–cyclohexane system. Izvestiya Akademii Nauk. Seriya Khimicheskaya.2021;(4):715–721 (in Russ.).]

46. Ryzhkin D.A., Raeva V.M. Calculation of vaporization enthalpies of methanol–tetrahydrofuran–acetonitrile at atmospheric pressure. In: Proc. of the 23rd International Conference on Chemical Thermodynamics in Russia. Russia, Kazan, August 22–27, 2022. P. 298.

47. Carrero-Mantilla J., Llano-Restrepo M. Vapor–phase chemical equilibrium for the hydrogenation of benzene to cyclohexane from reaction-ensemble molecular simulation. Fluid Phase Equil. 2004;219(2):181–193. https://doi.org/10.1016/j.fluid.2004.02.009

48. Wang X., Xu W., Li Y., Wang J., He F. Phase equilibria of three binary systems containing 2,5-dimethylthiophene and 2-ethylthiophene in hydrocarbons. Fluid Phase Equil. 2016;409:30–36. https://doi.org/10.1016/j.fluid.2015.09.030

49. Chen G., Wang Q., Zhang L.-Z., Bao J., Han S.-J. Study and applications of binary and ternary azeotropes. Thermochim. Acta. 1995;253:295–305. https://doi.org/10.1016/00406031(94)02078-3


Supplementary files

1. Неозаглавлен
Subject
Type Other
View (92KB)    
Indexing metadata ▾
2. Dependence of the molar vaporization enthalpy for benzene (1)–ethanol (2) system on the composition: method I
Subject
Type Исследовательские инструменты
View (92KB)    
Indexing metadata ▾
  • Arrays of calculated data were obtained with regard to molar enthalpies of vaporization for 25 compositions of binary azeotropes (isothermal, isobaric conditions of phase equilibrium), and the full range of compositions of the benzene–ethanol system at atmospheric pressure.
  • The accuracy of thermodynamic methods for calculating the vaporization enthalpy of binary azeotropic mixtures according to vapor–liquid equilibrium data is higher in 85% of cases for isothermal, and in 75% of cases for isobaric conditions.
  • By taking into account the influence of temperature on the activity coefficients of components in the liquid phase, the values of excess molar enthalpy both for azeotrope compositions and for the full concentration range of the benzene–ethanol system under isobaric conditions of liquid–vapor phase equilibrium can be accurately reproduced.

Review

For citations:


Ryzhkin D.A., Raeva V.M. Comparison of methods for calculating the enthalpy of vaporization of binary azeotropic mixtures. Fine Chemical Technologies. 2024;19(4):279-292. https://doi.org/10.32362/2410-6593-2024-19-4-279-292. EDN: WXQZSM

Views: 808


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)