A study of the mechanical and thermophysical properties of crystal matrices for the immobilization of high-level wastes
https://doi.org/10.32362/2410-6593-2024-19-2-149-162
Abstract
Objectives. The aim of the study was to confirm the compliance of the mechanical and thermophysical properties of titanate-zirconate mineral-like matrices intended for immobilization of the rare-earth-actinide fraction of high-level waste (HLW) with pyrochlore structures (Nd2ZrTiO7) and orthorhombic titanate of rare earth elements (Nd4Ti9O24+TiO2) with the Russian requirements for the final forms of radioactive waste sent for disposal. With regard to fractionated radioactive waste, this type of matrix is preferable when compared with conservative aluminophosphate and borosilicate glasses. This is due to larger capacity, and a better level of chemical, thermal, and radiation resistance.
Methods. The synthesis of mineral-like matrices was carried out by remelting a granular precursor consisting of mineral-forming metal oxides and a solution imitating the rare earth-actinide fraction of HLW in an induction furnace with a cold crucible. The thermal diffusivity was determined by the laser flash method. The heat capacity of the matrix samples was measured by differential scanning calorimetry. Ultimate flexural and compressive strengths were determined using universal test machines. The elastic moduli (Young’s) were measured by the acoustic method. The temperature coefficients of linear expansion were determined using a high-temperature dilatometer.
Results. The ultimate strength of the matrices (Nd2ZrTiO7) and (Nd4Ti9O24+TiO2) was found to be 150–179 and 20.6–57.8 MPa in compression and bending respectively. Young’s moduli vary from 3.7 ∙ 107 to 2.15 ∙ 108 kN/m2. With an increase in temperature from 50 to 500°C, the values of thermal conductivity have a pronounced tendency to decrease from 1.71 to 0.91 W/(m∙K). The temperature coefficients of linear expansion increase from 6.96 ∙ 10−6 to 1.01 ∙ 10−5 K−1 in the same temperature range.
Conclusions. Comprehensive studies of titanate-zirconate mineral-like matrices show that their mechanical and thermal properties in certain cases significantly exceed the minimum requirements of regulatory documentation for the final forms of HLW.
About the Authors
I. V. KuznetsovRussian Federation
Ivan V. Kuznetsov, Cand. Sci. (Eng.), Head of the Laboratory of Methods of Handling Spent Nuclear Fuel and Radioactive Waste
2-1, Electrodnaya ul., Moscow, 115524, Russia
A. Yu. Zobkova
Russian Federation
Anna Yu. Zobkova, Cand. Sci. (Eng.), Leading Engineer, Laboratory of High-Temperature Chemistry and Electrochemistry
2-1, Electrodnaya ul., Moscow, 115524, Russia
M. Yu. Kalenova
Russian Federation
Maya Yu. Kalenova, Cand. Sci. (Eng.), Head of the Department “Chemical Technologies of Closed Nuclear Fuel Cycle”
2-1, Electrodnaya ul., Moscow, 115524, Russia
A. S. Shchepin
Russian Federation
Andrey S. Shchepin, Leading Engineer, Laboratory of Methods of Handling Spent Nuclear Fuel and Radioactive Waste
2-1, Electrodnaya ul., Moscow, 115524, Russia
O. N. Budin
Russian Federation
Oleg N. Budin, Leading Engineer, Laboratory of Methods of Handling Spent Nuclear Fuel and Radioactive Waste
2-1, Electrodnaya ul., Moscow, 115524, Russia
V. A. Stepanov
Russian Federation
Vladimir A. Stepanov, Dr. Sci. (Phys.-Math.), Professor, Head of the Department of Laser and Plasma Technologies (LaPlaz Department)
Author ID 7402659774,
ResearcherID C-8683-2018
1, Studgorodok, Obninsk, Kaluga oblast, 249039, Russia
I. M. Melnikova
Russian Federation
Irina M. Melnikova, Junior Researcher, Testing Analytical Center
2-1, Electrodnaya ul., Moscow, 115524, Russia
O. I. Stefanovskaya
Russian Federation
Olga I. Stefanovskaya, Cand. Sci. (Eng.), Senior Researcher, Laboratory of Radioecological and Radiation Problems
Scopus Author ID 14623103700
31, Leninskii pr., Moscow, 119071, Russia
K. V. Klemazov
Russian Federation
Kirill V. Klemazov, Lecturer, Institute of Laser and Plasma Technologies (LaPlaz Department)
Scopus Author ID 57212564605
1, Studgorodok, Obninsk, Kaluga oblast, 249039, Russia
References
1. Putilov A.V., Vorobiev A.G., Bugaenko M.V. The strategy and practice of radioactive waste management and their geological disposal. Gornyi Zhurnal = Mining J. 2015;10:6–10 (in Russ.). https://doi.org/10.17580/gzh.2015.10.01
2. Gupalo T.A., Chistyakov V.N., Feshchenko A.I., Suvorova A.A., Shadrin A.Yu., Schmidt O.V. Kormilitsyn M.V., Osipenko A.G. Technical and economic modeling of technological schemes of preparation of high level wastes from processing of spent nuclear fuel for final isolation. Voprosy radiatsionnoi bezopasnosti = Issues of Radiation Safety. 2012;4(68):38–48 (in Russ.).
3. Linge I.I., Utkin S.S., Kulagina T.A., Trokhov N.N. Underground research laboratory in “the Yenisei” section of the Nizhnekansky massif of the Krasnoyarsk Region. Zhurnal Sibirskogo federal’nogo universiteta. Seriya: Tekhnika i tekhnologii = Journal of the Siberian Federal University. Series: Technics and Technologies. 2019;12(7):830–841 (in Russ.).
4. Dorofeev A.N., Bolshov L.A., Linge I.I., Utkin S.S., Savelyeva E.A. Strategic master plan for R&D demonstrating the safety of construction, operation and closure of a deep geological disposal facility for radioactive waste. Radioaktivnye otkhody = Radioactive Waste. 2017;1(1): 34–43 (in Russ.).Kochkin B.T., Bogatov S.A. Borehole RW disposal concept and prospects of its implementation in Russia. Radioaktivnye otkhody = Radioactive Waste. 2022;2(19):85–99 (in Russ). https://doi.org/10.25283/2587-9707-2022-2-85-99
5. Kudryavtsev E.G. Khaperskaya A.V. Problems of SNF handling in Russia and prospects for their solution. Rossiiskii khimicheskii zhurnal = Russ. Chem. J. 2010;54(3):8–11 (in Russ.).
6. Glagolenko Yu.V., Dzekun E.G., Drozhko E.G. Medvedev G.M., Rovnyi S.I., Suslov A.P. Strategy for handling radioactive waste at the Mayak production association. Voprosy radiatsionnoi bezopasnosti = Issues of Radiation Safety. 1996;2:3–10 (in Russ.).
7. Ozhovan M.I., Poluektov P.P. Glasses for immobilization of nuclear waste. Priroda J. 2010;3(1135):3–11 (in Russ.).
8. Aloy A.S., Blokhin A.I., Blokhin P.A., Kovalev N.V. Radiation characteristics of borosilicate glass containing high-level waste. Radioaktivnye otkhody = Radioactive Waste. 2020;3(12):93–100 (in Russ.). https://doi.org/10.25283/2587-9707-2020-3-93-100
9. Aloy A.S., Trofimenko A.V., Koltsova T.I., Nikandrova M.V. Physico-chemical characteristics of vitrified simulated HLW at EDC MCC. Radioaktivnye otkhody = Radioactive Waste. 2018;4(5):67–75 (in Russ.).
10. Logunov M.V., Voroshilov Yu.A., Babain V.A., Skobtsov A.S. Experience of Mastering, Industrial Exploitation, and Optimization of the Integrated Extraction–Precipitation Technology for Fractionation of Liquid High-Activity Wastes at Mayak Production Association. Radiochemistry. 2020;62(6): 700–722. https://doi.org/10.1134/S1066362220060028 [Original Russian Text: Logunov M.V., Voroshilov Yu.A., Babain V.A., Skobtsov A.S. Experience of Mastering, Industrial Exploitation, and Optimization of the Integrated Extraction–Precipitation Technology for Fractionation of Liquid High-Activity Wastes at Mayak Production Association. Radiokhimiya. 2020;62(6):463–484 (in Russ.). https://doi.org/10.31857/S0033831120060027 ]
11. Tananaev I.G., Myasoedov B.F. Commercial recovery of valuable radionuclides from spent nuclear fuel: Methods and approaches. Radiochemistry. 2016;58(3):257–264. https://doi.org/10.1134/S1066362216030061
12. [Original Russian Text: Tananaev I.G., Myasoedov B.F. Commercial recovery of valuable radionuclides from spent nuclear fuel: Methods and approaches. Radiokhimiya. 2016;58(3):222–228 (in Russ.).]
13. Batorshin G.Sh., Kirillov S.N., Smirnov I.V., Sarychev G.A. Tananaev I.G., Fedorova O.V., Myasoedov B.F. Complex extraction of valuable components from anthropogenic waste as an option of establishing cost-effective closed nuclear fuel cycle. Voprosy radiatsionnoi bezopasnosti = Issues of Radiation Safety. 2015;3(79):30–36 (in Russ.).
14. Salvatores M., Palmiotti G. Radioactive waste partitioning and transmutation within advanced fuel cycles: Achievements and challenges. Progress in Particle and Nuclear Physics. 2011;66(1):144–166. https://doi.org/10.1016/j.ppnp.2010.10.001
15. Mamchich M.V., Goletsky N.D., Tkachenko L.I., Vyznyi A.N., Naumov A.A., Puzikov E.A., Zil’berman B.Y., Belova E.V. Development and Verification of a Scheme for Fractionation of HAWs with TODGA Extractive Agent in a “Light” Diluent. Radiochemistry. 2021;63(4):462–469. https://doi.org/10.1134/S1066362221040093 [Original Russian Text: Mamchich M.V., Goletsky N.D., Tkachenko L.I., Vyznyi A.N., Naumov A.A., Belova E.V., Puzikov E.A., Zil’berman B.Y. Development and Verification of a Scheme for Fractionation of HAWs with TODGA Extractive Agent in a “Light” Diluent. Radiokhimiya. 2021;63(4):372–380 (in Russ.). https://doi.org/10.31857/S0033831121040092 ]
16. Wei Y.Z., Wang X.P., Liu R.Q., Wu Y., Usuda S., Arai T. An advanced partitioning process for key elements separation from high level liquid waste. Sci. China Chem. 2012;55:(9): 1726–1731. https://doi.org/10.1007/s11426-012-4697-4
17. Iqbal M., Waheed K., Rahat S.B., Lee T.M., Lee M.S. An overview of molecular extractants in room temperature ionic liquids and task specific ionic liquids for the partitioning of actinides/lanthanides. J. Radioanal. Nuclear Chem. 2020;325(1):1–31. https://doi.org/10.1007/s10967-020-07199-1
18. Nayak P.K., Kumaresan R, Venkatesan K.A., Antony M.P., Vasudeva Rao P.R. A New Method for Partitioning of Trivalent Actinides from High-Level Liquid Waste. Sep. Sci. Technol. 2013;48(9):1409–1416. https://doi.org/10.1080/01496395.2012.737401
19. Awwad N.S. Introductory Chapter: From the Cradle to the Grave for the Nuclear Fuel Cycle. In: Awwad N.S. (Ed.). Nuclear Power Plants – The Processes from the Cradle to the Grave. London: IntechOpen; 2021. 168 p. https://doi.org/10.5772/intechopen.87697
20. Bogdanov R.V., Kuznetsov R.A., Epimakhov V.N., Oleinik M.S., Epimakhov T.V. Method for immobilization of strontium-cesium fraction of highly active wastes by incorporation into geo-ceramic matrices: Pat. RU2561508C1. Publ. 27.08.2015 (in Russ.).
21. Yudintsev S.V., Nikolskii M.S., Nikonov B.S., Malkovskii V.I. Matrices for isolation of actinide wastes in a deep well repository. Dokl. Earth Sci. 2018;480(1):631–636. https://doi.org/10.1134/S1028334X18050203 [Original Russian Text: Yudintsev S.V., Nikolskii M.S., Nikonov B.S., Malkovskii V.I. Matrices for isolation of actinide wastes in a deep well repository. Doklady Akademii Nauk. 2018;480(2):217–222 (in Russ.). https://doi.org/10.7868/S0869565218140177 ]
22. Alekseeva L.S., Nokhrin A.V., Karazanov K.O., et al. Mechanical Properties and Thermal Shock Resistance of Fine-Grained Nd:YAG/SiC Ceramics. Inorg. Mater. 2022;58(2): 199–204. https://doi.org/10.1134/S0020168522020017 [Original Russian Text: Alekseeva L.S., Nokhrin A.V., Karazanov K.O., Orlova A.I., Boldin M.S., Lantsev E.A., Murashov A.A., Chuvildeev V.N. Mechanical Properties and Thermal Shock Resistance of Fine-Grained Nd:YAG/SiC Ceramics. Neorganicheskie Materialy. 2022;58(2):209–214 (in Russ.)]
23. Yudintsev S.V. Isolation of Separated Waste of Nuclear Industry. Radiochemistry. 2021;63(5):527–555. https://doi.org/10.1134/S1066362221050015 [Original Russian Text: Yudintsev S.V. Isolation of Separated Waste of Nuclear Industry. Radiokhimiya. 2021;63(5): 403–430(inRuss.).https://doi.org/10.31857/S0033831121050014 ]
24. Yudintsev S.V. Lanthanide titanates as promising matrices for immobilization of actinide wastes. Dokl. Earth Sci. 2015;460(2):130–136. https://doi.org/10.1134/S1028334X15020051 [Original Russian Text: Yudintsev S.V. Lanthanide titanates as promising matrices for immobilization of actinide wastes. Doklady Akademii Nauk. 2015;460(4):453–458 (in Russ.). https://doi.org/10.7868/S0869565215040192 ]
25. Baranov V.G., Tenishev A.V., Lunev A.V., Pokrovskii S.A., Khlunov A.V. High-temperature measurements of thermal conductivity of reactor materials by laser flash. Yadernaya fizika i inzhiniring = Nuclear Physics and Engineering. 2011;2(4):291–302 (in Russ.).
26. Golovin Yu.I., Tyurin A.I., Golovin D.Yu., et al. Determining the Temperature Diffusivity of Transparent Materials via a Modified Laser Flash Technique. Bull. Russ. Acad. Sci.: Physics. 2020;84(7):829–834. https://doi.org/10.3103/S1062873820070114 [Original Russian Text: Golovin Yu.I., Tyurin A.I., Golovin D. Yu., Samodurov A.A. Determining the Temperature Diffusivity of Transparent Materials via a Modified Laser Flash Technique. Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya. 2020;84(7):1004–1009 (in Russ.). https://doi.org/10.31857/S036767652007011X ]
27. Mezhetskii G.D., Zagrebin G.G., Reshetnik N.N. Soprotivlenie materialov (Strength of Materials). Moscow: Dashkov i K; 2016. 432 p. (in Russ.).
28. Okhotin A.S. Teploprovodnost’ tverdykh tel (Thermal Conductivity of Solids). Moscow: Energoatomizdat; 1984. 312 p. (in Russ.).
29. Tolkacheva A.S., Pavlova I.A. Obshchie voprosy tekhnologii tonkoi keramiki (General issues of fine ceramics technology). Yekaterinburg: UrFU; 2018. 184 p. (in Russ.).
Supplementary files
|
1. Titanate-zirconate matrix with the pyrochlore structure | |
Subject | ||
Type | Исследовательские инструменты | |
View
(403KB)
|
Indexing metadata ▾ |
- The compliance of the mechanical and thermophysical properties of titanate-zircon mineral-like matrices intended for immobilization of the rare-earth-actinide fraction of high-level waste with the Russian requirements for the final forms of radioactive waste sent for disposal was confirmed.
- Comprehensive studies of titanate-zirconate mineral-like matrices show that their mechanical and thermal properties in certain cases significantly exceed the minimum requirements of regulatory documentation for the final forms of high-level waste.
Review
For citations:
Kuznetsov I.V., Zobkova A.Yu., Kalenova M.Yu., Shchepin A.S., Budin O.N., Stepanov V.A., Melnikova I.M., Stefanovskaya O.I., Klemazov K.V. A study of the mechanical and thermophysical properties of crystal matrices for the immobilization of high-level wastes. Fine Chemical Technologies. 2024;19(2):149-162. https://doi.org/10.32362/2410-6593-2024-19-2-149-162