Methods for the synthesis of barium titanate as a component of functional dielectric ceramics
https://doi.org/10.32362/2410-6593-2024-19-1-72-87
Abstract
Objectives. To examine the general principles and recent advances in the synthesis of high-purity and high-homogeneity barium titanate powders in the manufacture of electronic components.
Results. The main publications regarding the synthesis of barium titanate powder, including the works of recent years, were analyzed. The technological advantages and disadvantages of various synthesis methods were identified. Groups of methods based on solid-state interaction of reagents and methods of “wet chemistry” were also considered. The possibilities of producing barium titanate particles of non-isometric shapes for creating textured ceramics were discussed separately.
Conclusions. Barium titanate is a well-known ferroelectric with a high dielectric constant and low dielectric loss. It is used as a component in ceramic electronic products, for example, capacitors, memory devices, optoelectronic devices, and piezoelectric transducers. The possibilities of producing functional ceramics based on barium titanate powder largely depend on its state and morphological characteristics, determined during the synthesis stage. The most important factors affecting the functional characteristics of ceramics are the purity and morphology of the powder raw materials used.
Keywords
About the Authors
A. A. KholodkovaRussian Federation
Anastasia A. Kholodkova - Cand. Sci. (Chem.), Senior Researcher, Laboratory of Ceramic Materials and Technologies, MIREA – RTU; Junior Researcher, Department of Physical Chemistry, Faculty of Chemistry, Lomonosov MSU, Scopus Author ID 56530861400, ResearcherID M-2169-2016.
78, Vernadskogo pr., Moscow, 119454; 1–3, Kolmogorova ul., Moscow, 119234
Competing Interests:
The authors declare no obvious and potential conflicts of interest related to the publication of this article
A. V. Reznichenko
Russian Federation
Alexander V. Reznichenko - Research Engineer, Laboratory of Ceramic Materials and Technologies. Scopus Author ID 56600221500.
78, Vernadskogo pr., Moscow, 119454
Competing Interests:
The authors declare no obvious and potential conflicts of interest related to the publication of this article
A. A. Vasin
Russian Federation
Alexander A. Vasin - Cand. Sci. (Eng.), Senior Researcher, Laboratory of Ceramic Materials and Technologies, Scopus Author ID 57211840246, ResearcherID К-3214-2015.
78, Vernadskogo pr., Moscow, 119454
Competing Interests:
The authors declare no obvious and potential conflicts of interest related to the publication of this article
A. V. Smirnov
Russian Federation
Andrey V. Smirnov - Cand. Sci. (Eng.), Head of the Laboratory of Ceramic Materials and Technologies, Scopus Author ID 56970389000, ResearcherID J-2763-2017.
78, Vernadskogo pr., Moscow, 119454
Competing Interests:
The authors declare no obvious and potential conflicts of interest related to the publication of this article
References
1. Pithan C., Hennings D., Waser R. Progress in the Synthesis of Nanocrystalline BaTiO3 Powders for MLCC: Progress in Synthesis of Nanocrystalline BaTiO3 Powders. Int. J. Appl. Ceram. Technol. 2006;2(1):1–14. https://doi.org/10.1111/j.1744-7402.2005.02008.x
2. Brzozowski E., Castro M.S. Synthesis of barium titanate improved by modifications in the kinetics of the solid state reaction. J. Eur. Ceram. Soc. 2000;20(14–15):2347–2351. https://doi.org/10.1016/S0955-2219(00)00148-5
3. Chaisan W., Yimnirun R., Ananta S., Cann D.P. Dielectric properties of solid solutions in the lead zirconate titanatebarium titanate system prepared by a modified mixed-oxide method. Mater. Lett. 2005;59(28):3732–3737. https://doi.org/10.1016/j.matlet.2005.06.045
4. Kambale K.R.R., Kulkarni A.R.R., Venkataramani N. Grain growth kinetics of barium titanate synthesized using conventional solid state reaction route. Ceram. Int. 2014;40(1A):667–673. https://doi.org/10.1016/j.ceramint.2013.06.053
5. Mikhailov M.M., Neshchimenko V.V., Utebekov T.A., Yuriev S.A. Features high-temperature synthesis of barium zirconium titanate powder by using zirconium dioxide nanopowders. J. Alloys Compd. 2015;652:364–370. https://doi.org/10.1016/j.jallcom.2015.08.124
6. Roy A.C., Mohanta D. Structural and ferroelectric properties of solid-state derived carbonate-free barium titanate (BaTiO3) nanoscale particles. Scr. Mater. 2009;61(9):891–894. https://doi.org/10.1016/j.scriptamat.2009.07.022
7. Buscaglia M.T., Bassoli M., Buscaglia V., Alessio R. Solid-State Synthesis of Ultrafine BaTiO3 Powders from Nanocrystalline BaCO3 and TiO2. J. Am. Ceram. Soc. 2005;88(9):2374–2379. https://doi.org/10.1111/j.1551-2916.2005.00451.x
8. Kainth S., Choudhary R., Upadhyay S., Bajaj P., Sharma P., Brar L.K., et al. Non-isothermal solid-state synthesis kinetics of the tetragonal barium titanate. J. Solid State Chem. 2022;312:123275. https://doi.org/10.1016/j.jssc.2022.123275
9. Qian H., Zhu G., Xu H., Zhang X., Zhao Y., Yan D., et al. Preparation of tetragonal barium titanate nanopowders by microwave solid-state synthesis. Appl. Phys. A. 2020;126(4):294. https://doi.org/10.1007/s00339-020-03472-y
10. Sundararajan T., Prabu S.B., Vidyavathy S.M. Combined effects of milling and calcination methods on the characteristics of nanocrystalline barium titanate. Mater. Res. Bull. 2012;47(6):1448–5144. https://doi.org/10.1016/j.materresbull.2012.02.044
11. Clabel H J.L., Awan I.T., Pinto A.H., Nogueira I.C., Bezzon V.D.N., Leite E.R., et al. Insights on the mechanism of solid state reaction between TiO2 and BaCO3 to produce BaTiO3 powders: The role of calcination, milling, and mixing solvent. Ceram. Int. 2020;46(3):2987–3001. https://doi.org/10.1016/j.ceramint.2019.09.296
12. Nath A.K., Jiten C., Singh K.C., Laishram R., Thakur O.P., Bhattacharya D.K. Effect of Ball Milling Time on the Electrical and Piezoelectric Properties of Barium Titanate Ceramics. Integr. Ferroelectr. 2010;116(1):51–58. https://doi.org/10.1080/10584587.2010.488572
13. Rotaru R., Peptu C., Samoila P., Harabagiu V. Preparation of ferroelectric barium titanate through an energy effective solid state ultrasound assisted method. J. Am. Ceram. Soc. 2017;100(10):4511–4518. https://doi.org/10.1111/jace.15003
14. Lee H.W., Kim N.W., Nam W.H., Lim Y.S. Sonochemical activation in aqueous medium for solid-state synthesis of BaTiO3 powders. Ultrason. Sonochem. 2022;82:105874. https://doi.org/10.1016/j.ultsonch.2021.105874
15. Akbas H.Z., Aydin Z., Yilmaz O., Turgut S. Effects of ultrasonication and conventional mechanical homogenization processes on the structures and dielectric properties of BaTiO3 ceramics. Ultrason. Sonochem. 2017;34:873–880. https://doi.org/10.1016/j.ultsonch.2016.07.027
16. Jin S.H., Lee H.W., Kim N.W., Lee B.W., Lee G.G., Hong Y.W., et al. Sonochemically activated solid-state synthesis of BaTiO3 powders. J. Eur. Ceram. Soc. 2021;41(9):4826–4834. https://doi.org/10.1016/j.jeurceramsoc.2021.03.043
17. Stojanovic B.D., Simoes A.Z., Paiva-Santos C.O., Jovalekic C., Mitic V.V., Varela J.A. Mechanochemical synthesis of barium titanate. J. Eur. Ceram. Soc. 2005;25(12):1985–1989. https://doi.org/10.1016/j.jeurceramsoc.2005.03.003
18. Stojanovic B.D. Mechanochemical synthesis of ceramic powders with perovskite structure. J. Mater. Process. Technol. 2003; 143–144(1):78–81. https://doi.org/10.1016/S0924-0136(03)00323-6
19. Ohara S., Kondo A., Shimoda H., Sato K., Abe H., Naito M. Rapid mechanochemical synthesis of fine barium titanate nanoparticles. Mater. Lett. 2008;62(17–18):2957–2959. https://doi.org/10.1016/j.matlet.2008.01.083
20. Kozma G., Lipták K., Deák C., Rónavári A., Kukovecz Á., Kónya Z. Conversion Study on the Formation of Mechanochemically Synthesized BaTiO3. Chemistry. 202215;4(2):592–602. https://doi.org/10.3390/chemistry4020042
21. Kudłacik-Kramarczyk S., Drabczyk A., Głąb M., Dulian P., Bogucki R., Miernik K., et al. Mechanochemical Synthesis of BaTiO3 Powders and Evaluation of Their Acrylic Dispersions. Materials. 2020;13(15):3275. https://doi.org/10.3390/ma13153275
22. Kong L.B., Zhang T.S., Ma J., Boey F. Progress in synthesis of ferroelectric ceramic materials via high-energy mechanochemical technique. Prog. Mater. Sci. 2008;53(2): 207–322. https://doi.org/10.1016/j.pmatsci.2007.05.001
23. Apaydin F., Parlak T.T., Yildiz K. Low temperature formation of barium titanate in solid state reaction by mechanical activation of BaCO3 and TiO2. Materials Research Express. 2020;6(12):126330. https://doi.org/10.1088/20531591/ab6c0d
24. More S.P., Khedkar M.V., Jadhav S.A., Somvanshi S.B., Humbe A.V., Jadhav K.M. Wet chemical synthesis and investigations of structural and dielectric properties of BaTiO3 nanoparticles. J. Phys.: Conf. Ser. 2020;1644(1):012007. https://doi.org/10.1088/1742-6596/1644/1/012007
25. Hennings D., Mayr W. Thermal Decomposition of (BaTi) Citrates into Barium Titanate. J. Solid State Chem. 1978;26(4):329–338. https://doi.org/10.1016/0022-4596(78)90167-6
26. Kao C.F., Yang W.D. Preparation of barium strontium titanate powder from citrate precursor. Appl. Organomet. Chem. 1999;13(5):383–397. http://doi.org/10.1002/(SICI)10990739(199905)13:5<383::AID-AOC836>3.0.CO;2-P
27. Wang H. Inhibition of the formation of barium carbonate by fast heating in the synthesis of BaTiO3 powders via an EDTA gel method. Mater. Chem. Phys. 2002;74:1–4. https://doi.org/10.1016/S0254-0584(01)00410-2
28. Sen S., Choudhary R.N.P., Pramanik P. Synthesis and characterization of nanostructured ferroelectric compounds. Mater. Lett. 2004;58(27–28):3486–3490. https://doi.org/10.1016/j.matlet.2004.06.063
29. Aktaş P. Synthesis and Characterization of Barium Titanate Nanopowders by Pechini Process. Celal Bayar University Journal of Science (CBUJOS). 2020;16(3):293–300. https://doi.org/10.18466/cbayarfbe.734061
30. Turky A.O., Rashad M.M., Bechelany M. Tailoring optical and dielectric properties of Ba0.5Sr0.5TiO3 powders synthesized using citrate precursor route. Mater. Des. 2016;90:54–59. https://doi.org/10.1016/j.matdes.2015.10.113
31. Hsieh T.-H., Yen S.-C., Ray D.-T. A study on the synthesis of (Ba,Ca)(Ti,Zr)O3 nano powders using Pechini polymeric precursor method. Ceram. Int. 2012;38(1):755–759. https://doi.org/10.1016/j.ceramint.2011.08.001
32. Durán P., CapelF., Tartaj J., Moure C. BaTiO3 formation by thermal decomposition of a (BaTi)-citrate polyester resin in air. J. Mater. Res. 2001;16(1):197–209. https://doi.org/10.1557/JMR.2001.0032
33. Ries A., Simões A.Z., Cilense M, Zaghete M.A, Varela J.A. Barium strontium titanate powder obtained by polymeric precursor method. Mater. Charact. 2003;50(2–3):217–221. https://doi.org/10.1016/S1044-5803(03)00095-0
34. Prado L.R., de Resende N.S., Silva R.S., Egues S.M.S., Salazar-Banda G.R. Influence of the synthesis method on the preparation of barium titanate nanoparticles. Chem. Eng. Process.: Process Intensif. 2015;103:12–20. https://doi.org/10.1016/j.cep.2015.09.011
35. Duran P., Gutierrez D., Tartaj J., Moure C. Densification behaviour, microstructure development and dielectric properties of pure BaTiO3 prepared by thermal decomposition of (Ba, Ti)-citrate polyester resins. Ceram. Int. 2002;28(3):283–292. https://doi.org/10.1016/S02728842(01)00092-X
36. Luan W., Gao L. Influence of pH value on properties of nanocrystalline BaTiO3 powder. Ceram. Int. 2001;27(6): 645–648. https://doi.org/10.1016/S0272-8842(01)00012-8
37. Lazarević Z.Ž., Vijatović M., Dohčević-Mitrović Z., Romčević N.Ž., Romčević M.J., Paunović N., et al. The characterization of the barium titanate ceramic powders prepared by the Pechini type reaction route and mechanically assisted synthesis. J. Eur. Ceram. Soc. 2010;30(2):623–628. https://doi.org/10.1016/j.jeurceramsoc.2009.08.011
38. Ashiri R., Nemati A., Sasani Ghamsari M. Crack-free nanostructured BaTiO3 thin films prepared by sol–gel dipcoating technique. Ceram. Int. 2014;40(6):8613–8619. https://doi.org/10.1016/j.ceramint.2014.01.078
39. Hayashi T., Ohji N., Hiraoka K., Fukunaga T., Maiwa H. Preparation and Properties of Ferroelectric BaTiO3 Thin Films by Sol–Gel Process. Jpn. J. Appl. Phys. 1993;32(9S): 4092–4094. https://doi.org/10.1143/JJAP.32.4092
40. Demydov D., Klabunde K.J. Characterization of mixed metal oxides (SrTiO3 and BaTiO3) synthesized by a modified aerogel procedure. J. Non-Cryst. Solids. 2004;350:165–172. https://doi.org/10.1016/j.jnoncrysol.2004.06.022
41. Suslov A., Kobylianska S., Durilin D., Ovchar O., Trachevskii V., Jancar B., et al. Modified Pechini Processing of Barium and Lanthanum–Lithium Titanate Nanoparticles and Thin Films. Nanoscale Res. Lett. 2017;12(1):350. https://doi.org/10.1186/s11671-017-2123-8
42. Teh Y.C., Saif A.A., Poopalan P. Sol–Gel Synthesis and Characterization of Ba1−xGdxTiO3+δ Thin Films on SiO2/Si Substrates Using Spin-Coating Technique. Mater. Sci. 20179;23(1):51–56. https://doi.org/10.5755/j01.ms.23.1.13954
43. Devi L.R., Sharma H.B. Structural and optical parameters of sol–gel derived Barium Strontium Titanate (BST) thin film. Mater. Today Proc. 2022;65(5):2801–2806. https://doi.org/10.1016/j.matpr.2022.06.219
44. Pfaff G. Sol–gel synthesis of barium titanate powders of various compositions. J. Mater. Chem. 1992;2(6):591–594. https://doi.org/10.1039/JM9920200591
45. Phule P.P., Risbud S.H. Sol–gel synthesis and characterization of BaTi4O9 and BaTiO3 powders. In: Materials Research Society Symposium Proceedings (MRS Online Proceedings Library). 1988:121:275–280. https://doi.org/10.1557/PROC121-275
46. Cernea M. Sol–gel synthesis and characterization of BaTiO3 powder. J. Optoelectron. Adv. Mater. 2005;7(6):3015–3022.
47. Omar A.F.C., Hatta F.F., Kudin T.I.T., Mohamed M.A., Hassan O.H. Calcination Effect on Structural Trasformation of Barium Titanite Ferroelectric Ceramic by Sol Gel Method. Int. J. Eng. Adv. Technol. 2019;9(1):5893–5896. https://doi.org/10.35940/ijeat.A3023.109119
48. Lemoine C., Gilbert B., Michaux B., Pirard J.P., Lecloux A. Synthesis of barium titanate by the sol–gel process. J. Non-Cryst. Solids. 1994;175(1):1–13. https://doi.org/10.1016/0022-3093(94)90309-3
49. Ianculescu A.C., Vasilescu C.A., Crisan M., Raileanu M., Vasile B.S., Calugaru M., et al. Formation mechanism and characteristics of lanthanum-doped BaTiO3 powders and ceramics prepared by the sol–gel process. Mater. Charact. 2015;106: 195–207. https://doi.org/10.1016/j.matchar.2015.05.022
50. Phule P.P., Risbud S.H. Low-temperature synthesis and processing of electronic materials in the BaO–TiO2 system. J. Mater. Sci. 1990;25:1169–1183. https://doi.org/10.1007/BF00585422
51. Nanni P., Viviani M., Buscaglia V. Synthesis of Dielectric Ceramic Materials. In: Nalwa H.S. (Ed.). Handbook of Low and High Dielectric Constant Materials and Their Applications. Academic Press; 1999. p. 429–55. https://doi.org/10.1016/B978-012513905-2/50011-X
52. Zheng C., Cui B., You Q., Chang Z. Characterization of BaTiO3 Powders and Ceramics Prepared Using the Sol–gel Process, with Triton X-100 Used as a Surfactant. In: The 7th National Conference on Functional Materials and Applications. 2010. P. 341–346.
53. Bakken K., Pedersen V.H., Blichfeld A.B., Nylund I.-E., Tominaka S., Ohara K., Grande T., Einarsrud M.-A. Structures and Role of the Intermediate Phases on the Crystallization of BaTiO3 from an Aqueous Synthesis Route. ACS Omega. 2021;6(14):9567–9576. https://doi.org/10.1021/acsomega.1c00089
54. Singh M., Yadav B.C., Ranjan A., Kaur M., Gupta S.K. Synthesis and characterization of perovskite barium titanate thin film and its application as LPG sensor. Sensors and Actuators B: Chemical. 2017;241:1170–1178. https://doi.org/10.1016/j.snb.2016.10.018
55. Nagdeote S.B. Sol–gel Synthesis, Structural and Dielectric Characteristics of Nanocrystalline Barium Titanate Solid. Macromol. Symp. 2021;400(1):2100060. https://doi.org/10.1002/masy.202100060
56. Boulos M., Guillemet-Fritsch S., Mathieu F., Durand B., Lebey T., Bley V. Hydrothermal synthesis of nanosized BaTiO3 powders and dielectric properties of corresponding ceramics. Solid State Ion. 2005;176(13–14):1301–1309. https://doi.org/10.1016/j.ssi.2005.02.024
57. Cai W., Rao T., Wang A., Hu J., Wang J., Zhong J., et al. A simple and controllable hydrothermal route for the synthesis of monodispersed cube-like barium titanate nanocrystals. Ceram. Int. 2015;41(3):4514–4522. https://doi.org/10.1016/j.ceramint.2014.11.146
58. Lee W.W., Chung W.H., Huang W.S., Lin W.C., Lin W.Y., Jiang Y.R., et al. Photocatalytic activity and mechanism of nano-cubic barium titanate prepared by a hydrothermal method. J. Taiwan Inst. Chem. Eng. 2013;44(4):660–669. https://doi.org/10.1016/j.jtice.2013.01.005
59. Kumazawa H., Kagimoto T., Kawabata A. Preparation of barium titanate ultrafine particles from amorphous titania by a hydrothermal method and specific dielectric constants of sintered discs of the prepared particles. J. Mater. Sci. 1996;31(10):2599–2602. https://doi.org/10.1007/BF00687288
60. Ávila H.A., Ramajo L.A., Reboredo M.M., Castro M.S., Parra R. Hydrothermal synthesis of BaTiO3 from different Ti-precursors and microstructural and electrical properties of sintered samples with submicrometric grain size. Ceram. Int. 2011;37(7):2383–2390. https://doi.org/10.1016/j.ceramint.2011.03.032
61. Zhu X., Zhang Z., Zhu J., Zhou S., Liu Z. Morphology and atomic-scale surface structure of barium titanate nanocrystals formed at hydrothermal conditions. J. Cryst. Growth. 2009;311(8):2437–2442. https://doi.org/10.1016/j.jcrysgro.2009.02.016
62. Zhu K., Qiu J., Kajiyoshi K., Takai M., Yanagisawa K. Effect of washing of barium titanate powders synthesized by hydrothermal method on their sinterability and piezoelectric properties. Ceram. Int. 2009;35(5):1947–1951. https://doi.org/10.1016/j.ceramint.2008.10.018
63. Hertl W. Kinetics of Barium Titanate Synthesis. J. Am. Ceram. Soc. 1988;71(10):879–883. https://doi.org/10.1111/j.1151-2916.1988.tb07540.x
64. MacLaren I., Ponton C.B. A TEM and HREM study of particle formation during barium titanate synthesis in aqueous solution. J. Eur. Ceram. Soc. 2000;20(9):1267–1275. https://doi.org/10.1016/S0955-2219(99)00287-3
65. Eckert J.O., Hung-Houston C.C., Gersten B.L., Lencka M.M., Riman R.E. Kinetics and Mechanisms of Hydrothermal Synthesis of Barium Titanate. J. Am. Ceram. Soc. 1996;79(11):2929–2939. https://doi.org/10.1111/j.1151-2916.1996.tb08728.x
66. Pinceloup P., Courtois C., Vincens J., Leriche A., Thierry B. Evidence of a dissolution-precipitation mechanism in hydrothermal synthesis of barium titanate powders. J. Eur. Ceram. Soc. 1999;19(6–7):973–977. https://doi.org/10.1016/S0955-2219(98)00356-2
67. Walton R.I., Millange F., Smith R.I., Hansen T.C., O’Hare D. Real Time Observation of the Hydrothermal Crystallization of Barium Titanate Using in Situ Neutron Powder Diffraction. J. Am. Chem. Soc. 2001;123(50):12547–12555. https://doi.org/10.1021/ja011805p
68. Lencka M.M., Riman R.E. Hydrothermal synthesis of perovskite materials: Thermodynamic modeling and experimental verification. Ferroelectrics. 1994;151(1): 159–164. https://doi.org/10.1080/00150199408244737
69. Lencka M.M., Riman R.E. Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders. Chem. Mater. 1993;5(1):61–70. https://doi.org/10.1021/cm00025a014
70. Akbulut Özen S., Özen M., Şahin M., Mertens M. Study of the hydrothermal crystallization process of barium titanate by means of X-ray mass attenuation coefficient measurements at an energy of 59.54 keV. Mater. Charact. 2017;129:329–335. https://doi.org/10.1016/j.matchar.2017.05.006
71. Neubrand A., Lindner R., Hoffmann P. Room-Temperature Solubility Behavior of Barium Titanate in Aqueous Media. J. Am. Ceram. Soc. 2004;83(4):860–864. https://doi.org/10.1111/j.1151-2916.2000.tb01286.x
72. Kholodkova A.A., Danchevskaya M.N., Ivakin Y.D., Muravieva G.P. Synthesis of fine-crystalline tetragonal barium titanate in low-density water fluid. J. Supercrit. Fluids. 2015;105:201–208. https://doi.org/10.1016/j.supflu.2015.05.004
73. Kholodkova A.A., Danchevskaya M.N., Ivakin Y.D., Muravieva G.P., Tyablikov A.S. Crystalline barium titanate synthesized in sub- and supercritical water. J. Supercrit. Fluids. 2016;117:194–202. https://doi.org/10.1016/j.supflu.2016.06.018
74. Hayashi H., Noguchi T., Islam N.M., Hakuta Y., Imai Y., Ueno N. Hydrothermal synthesis of BaTiO3 nanoparticles using a supercritical continuous flow reaction system. J. Cryst. Growth. 2010;312(12–13):1968–1972. https://doi.org/10.1016/j.jcrysgro.2010.03.034
75. Hakuta Y., Ura H., Hayashi H., Arai K. Effect of water density on polymorph of BaTiO3 nanoparticles synthesized under sub and supercritical water conditions. Mater. Lett. 2005;59(11):1387–1390. https://doi.org/10.1016/j.matlet.2004.11.063
76. Aoyagi S., Kuroiwa Y., Sawada A., Kawaji H., Atake T. Size effect on crystal structure and chemical bonding nature in BaTiO3 nanopowder. J. Therm. Anal. Calorim. 2005;81(3): 627–630. https://doi.org/10.1007/s10973-005-0834-z
77. Frey M.H., Payne D.A. Grain-size effect on structure and phase transformations for barium titanate. Phys. Rev. B. Condens. Matter. 1996;54(5):3158–3168. https://doi.org/10.1103/physrevb.54.3158
78. Hennings D., Schnell A., Simon G. Diffuse Ferroelectric Phase Transitions in Ba(Ti1−yZry)O3 Ceramics. J. Am. Ceram. Soc. 1982;65(11):539–544. https://doi.org/10.1111/j.1151-2916.1982.tb10778.x
79. Lee T., Aksay I.A. Hierarchical Structure−Ferroelectricity Relationships of Barium Titanate Particles. Cryst. Growth Des. 2001;1(5):401–419. https://doi.org/10.1021/cg010012b
80. Kozawa T., Onda A., Yanagisawa K. Accelerated formation of barium titanate by solid-state reaction in water vapour atmosphere. J. Eur. Ceram. Soc. 2009;29(15):3259–3264. https://doi.org/10.1016/j.jeurceramsoc.2009.05.031
81. Buscaglia V., Buscaglia M.T. Synthesis and Properties of Ferroelectric Nanotubes and Nanowires: A Review. In: Alguero M., Gregg J.M., Mitoseriu L. (Eds.). Nanoscale Ferroelectrics and Multiferroics: Key Processing and Characterization Issues, and Nanoscale Effects. First Edit. John Wiley & Sons; 2016. P. 200–231. https://doi.org/10.1002/9781118935743.ch8
82. Bao N., Shen L., Gupta A., Tatarenko A., Srinivasan G., Yanagisawa K. Size-controlled one-dimensional monocrystalline BaTiO3 nanostructures. Appl. Phys. Lett. 2009;94(25):253109. https://doi.org/10.1063/1.3159817
83. Maxim F., Ferreira P., Vilarinho P. Strategies for the Structure and Morphology Control of BaTiO3 Nanoparticles. In: New Applications for Nanomaterials. Series: Micro and Nanoengineering. 2014. V. 22. P. 83–97.
84. Yosenick T.J., Miller D.V., Kumar R., Nelson J.A., Randall C.A., Adair J.H. Synthesis of nanotabular barium titanate via a hydrothermal route. J. Mater. Res. 2005;20(4):837–843. https://doi.org/10.1557/JMR.2005.0117
85. Kong X., Hu D., Ishikawa Y., Tanaka Y., Feng Q. Solvothermal Soft Chemical Synthesis and Characterization of Nanostructured Ba1−x(Bi0.5K0.5)xTiO3 Platelike Particles with Crystal-Axis Orientation. Chem. Mater. 2011;23(17): 3978–3986. https://doi.org/10.1021/cm2015252
86. Huang K.C., Huang T.C., Hsieh W.F. Morphology-controlled synthesis of barium titanate nanostructures. Inorg. Chem. 2009;48(19):9180–9184. https://doi.org/10.1021/ic900854x
87. Feng Q., Hirasawa M., Yanagisawa K. Synthesis of crystalaxis-oriented BaTiO3 and anatase platelike particles by a hydrothermal soft chemical process. Chem. Mater. 2001;13(2):290–296. https://doi.org/10.1021/cm000411e
88. Kang S.O., Park B.H., Kim Y.Il. Growth mechanism of shape-controlled barium titanate nanostructures through soft chemical reaction. Cryst. Growth Des. 2008;8(9):3180–3186. https://doi.org/10.1021/cg700795q
89. Li Y., Gao X.P., Pan G.L., Yan T.Y., Zhu H.Y. Titanate nanofiber reactivity: Fabrication of MTiO3 (M = Ca, Sr, and Ba) perovskite oxides. J. Phys. Chem. C. 2009;113(11): 4386–4394. https://doi.org/10.1021/jp810805f
90. Xue L., Yan Y. Controlling the morphology of nanostructured barium titanate by hydrothermal method. J. Nanosci. Nanotechnol. 2010;10(2):973–979. https://doi.org/10.1166/jnn.2010.1884
91. Bao N., Shen L., Srinivasan G., Yanagisawa K., Gupta A. Shape-controlled monocrystalline ferroelectric barium titanate nanostructures: From nanotubes and nanowires to ordered nanostructures. J. Phys. Chem. C. 2008;112(23):8634–8642. https://doi.org/10.1021/jp802055a
92. Kanatzidis M.G., Poeppelmeier K.R., Bobev S., Guloy A.M., Hwu S.J., Lachgar A., et al. Report from the third workshop on future directions of solid-state chemistry: The status of solid-state chemistry and its impact in the physical sciences. Prog. Solid State Chem. 2008;36(1–2):1–133. https://doi.org/10.1016/j.progsolidstchem.2007.02.002
93. Özen M., Mertens M., Snijkers F., Hondt H.D., Cool P. Molten-salt synthesis of tetragonal micron-sized barium titanate from a peroxo-hydroxide precursor. Adv. Powder Technol. 2017;28(1):146–154. https://doi.org/10.1016/j.apt.2016.09.007
94. Gorokhovsky A.V., Escalante-Garcia J.I., Sánches-Monjarás T., Vargas-Gutierrez G. Synthesis of barium titanate powders and coatings by treatment of TiO2 with molten mixtures of Ba(NO3)2, KNO3 and KOH. Mater. Lett. 2004;58(17–18):2227–3220. https://doi.org/10.1016/j.matlet.2004.01.025
95. Zhang Y., Wang L., Xue D. Molten salt route of well dispersive barium titanate nanoparticles. Powder Technol. 2012;217: 629–633. https://doi.org/10.1016/j.powtec.2011.11.043
96. Zhao W., E L., Ya J., Liu Z., Zhou H. Synthesis of HighAspect-Ratio BaTiO3 Platelets by Topochemical Conversion and Fabrication of Textured Pb(Mg1/3Nb2/3)O3-32.5PbTiO3 Ceramics. Bull. Korean Chem. Soc. 2012;33(7):2305–2308. https://doi.org/10.5012/bkcs.2012.33.7.2305
Supplementary files
|
1. SEM image of BaTiO3 crystals obtained hydrothermally using plate-like K0.8Ti1.73Li0.27O4 particles as a template [87] | |
Subject | ||
Type | Исследовательские инструменты | |
View
(77KB)
|
Indexing metadata ▾ |
- The main publications regarding the synthesis of barium titanate powder, including the works of recent years, were analyzed.
- The technological advantages and disadvantages of various synthesis methods were identified. Groups of methods based on solid-state interaction of reagents and methods of “wet chemistry” were also considered.
- The possibilities of producing barium titanate particles of non-isometric shapes for creating textured ceramics were discussed separately.
Review
For citations:
Kholodkova A.A., Reznichenko A.V., Vasin A.A., Smirnov A.V. Methods for the synthesis of barium titanate as a component of functional dielectric ceramics. Fine Chemical Technologies. 2024;19(1):72-87. https://doi.org/10.32362/2410-6593-2024-19-1-72-87