Effect of adding technologically processed antibodies to interferon-gamma into a parent solution on the structural features of triglycine sulfate crystals grown from this solution
https://doi.org/10.32362/2410-6593-2023-18-6-517-533
Abstract
Objectives. Ferroelectric triglycine sulfate (TGS) belongs to a group of crystals whose properties are sensitive even to minor changes in growth conditions. The mechanism of spontaneous polarization in TGS is associated with the adjustment of protons which participate in the formation of hydrogen bonds. Therefore, the state of the parent solution plays an important role in the crystal formation. The study aims to investigate the structural features of TGS crystals grown using aqueous alcoholic solutions of technologically processed antibodies to interferon-gamma, in comparison with those of the crystals grown using the control solutions (technologically processed phosphate-buffered saline and intact aqueous alcoholic solution).
Methods. X-ray diffraction assay and Raman spectroscopy.
Results. The effect of solutions of the technologically processed antibodies to interferongamma added to a parent solution on the growth of TGS single crystals is established. This effect manifests in the changing in occupancy of the proton sublattice of the crystal grown from the parent solution containing technologically processed antibodies to interferon-gamma, as compared with the crystals grown from the control solutions. In the case of the crystal grown from the solution containing technologically processed antibodies to interferon-gamma, this change in the occupancy of the proton lattice is expressed in an increase in the length of N2–C3 bonds.
Conclusions. Adding the technologically processed antibodies in the parent solution before the crystal growth can affect the structure of TGS crystals.
Keywords
About the Authors
G. O. StepanovRussian Federation
German O. Stepanov, Cand. Sci. (Biol.), Senior Research
47-1, Trifonovskaya ul., Moscow, 129272
Scopus Author ID 15046034100
N. N. Rodionova
Russian Federation
Natalia N. Rodionova, Cand. Sci. (Biol.), Head of Physicochemical Research
47-1, Trifonovskaya ul., Moscow, 129272
R. R. Konstantinov
Russian Federation
Roman R. Konstantinov, Researcher
47-1, Trifonovskaya ul., Moscow, 129272
K. A. Subbotin
Russian Federation
Kirill A. Subbotin, Cand. Sci. (Eng.), Head of the Department of Laser Crystals and Solid-State Lasers; Associate Rofessor, Department of Chemistry and Technology of Crystals
38, Vavilova ul., Moscow, 119991
9, Miusskaya pl., Moscow, 125047
Scopus Author ID 6701562918
References
1. Yacenko O.B., Chudotvortsev I.G., Stekhanova G.D., Milovidova S.D., Rogazinskaya O.V. Density and contents of water in triglycinesulfate crystals. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Khimiya. Biologiya. Farmatsiya = Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2006;(2):117–121 (in Russ.).
2. Epifanov G.I. Fizika tverdogo tela (Solid State Physics). Moscow: Vysshaya shkola; 1977. 288 p. (in Russ.).
3. Lines M., Glass A. Segnetoelektriki i rodstvennye im materialy (Ferroelectrics and Related Materials). Transl. from. Engl. Moscow: Mir; 1981. 736 p. (in Russ.). [Lines M.E., Glass A.M. Principles and Application of Ferroelectrics and Related Materials. Oxford: Clarendon Press; 1977. 680 p.]
4. Stekhanova Zh.D., Yatsenko O.B., Milovidova S.D., Sidorkin A.S., Rogazinskaya O.V., Yur’ev A.N. Dielectric properties of crystals triglycine sulfate, grown from aqueous solutions at the temperatures below 0°C. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Khimiya. Biologiya. Farmatsiya = Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2004;(2):46–49 (in Russ.).
5. Stekhanova Z.D., Yatsenko O.B., Milovidova S.D., et al. Properties of Triglycine Sulfate Crystals Grown from Aqueous Solutions. Russ. J. Appl. Chem. 2005;78(1):42–49. https://doi.org/10.1007/s11167-005-0228-9 [Original Russian Text: Stekhanova Z.D., Yatsenko O.B., Milovidova S.D., Sidorkin A.S., Rogazinskaya O.V. Properties of Triglycine Sulfate Crystals Grown from Aqueous Solutions. Zhurnal Prikladnoi Khimii. 2005;78(1):45–51 (in Russ.).]
6. Epstein O. The spatial homeostasis hypothesis. Symmetry. 2018;10(4):103. https://doi.org/10.3390/sym10040103
7. Ryzhkina I.S., Murtazina L.I., Kiseleva Ju.V., et al. Self-organization and physicochemical properties of aqueous solutions of the antibodies to interferon gamma at ultrahigh dilution. Dokl. Phys. Chem. 2015;462(1):110–114. https://doi.org/10.1134/S0012501615050048 [Original Russian Text: Ryzhkina I.S., Murtazina L.I., Kiseleva Ju.V., Konovalov A.I. Self-organization and physicochemical properties of aqueous solutions of the antibodies to interferon gamma at ultrahigh dilution. Doklady Akademii Nauk. 2015;462(2):185–189 (in Russ.). https://doi.org/10.7868/S0869565215140170 ]
8. Ryzhkina I., Murtazina L., Gainutdinov K., Konovalov A. Diluted aqueous dispersed systems of 4-aminopyridine: The relationship of self-organization, physicochemical properties, and influence on the electrical characteristics of neurons. Front. Chem. 2021;9:623860. https://doi.org/10.3389/fchem.2021.623860
9. Konovalov A.I., Mal’tseva E.L., Ryzhkina I.S., et al. Formation of nanoassociates is a factor determining physicochemical and biological properties of highly diluted aqueous solutions. Dokl. Phys. Chem. 2014;456(2):86–89. https://doi.org/10.1134/S0012501614060050 [Original Russian Text: Konovalov A.I., Ryzhkina I.S., Murtazina L.I., Kiseleva Y.V., Mal’tseva E.L., Kasparov V.V., Pal’mina N.P. Formation of nanoassociates is a factor determining physicochemical and biological properties of highly diluted aqueous solutions. Doklady Akademii Nauk. 2014;456(5):561–564 (in Russ.). https://doi.org/10.7868/S0869565214170174 ]
10. Lobyshev V.I. Biological activity of solutions of substances at low and ultra low concentrations. Biophysics. 2022;67(4):523–533. https://doi.org/10.1134/S0006350922040145 [Original Russian Text: Lobyshev V.I. Biological activity of solutions of substances at low and ultra low concentrations. Biofizika. 2022;67(4):658–670 (in Russ.). https://doi.org/10.31857/S0006302922040044 ]
11. Lobyshev V.I. Dielectric characteristics of highly diluted aqueous diclofenac solutions in the frequency range of 20 Hz to 10 MHz. Phys. Wave Phen. 2019;27(2):119–127. https://doi.org/10.3103/S1541308X19020067
12. Lobyshev V.I. Evolution of high-frequency conductivity of pure water samples subjected to mechanical action: effect of a hypomagnetic filed. Phys. Wave Phen. 2021;29(2):98–101. https://doi.org/10.3103/S1541308X21020084
13. Yablonskaya O., Buravleva E., Novikov K., Voeikov V. Peculiarities of the physicochemical properties of hydrated C60 fullerene solutions in a wide range of dilutions. Front. Phys. 2021;9:627265. https://doi.org/10.3389/fphy.2021.627265
14. Belov V.V., Belyaeva I.A., Shmatov G.P., et al. IR spectroscopy of thin water layers and the mechanism of action α-tocopherol in ultra low concentrations. Dokl. Phys. Chem. 2011;439(1):123–126. https://doi.org/10.1134/S0012501611070013 [Original Russian Text: Belov V.V., Belyaeva I.A., Shmatov G.P., Zubareva G.M., Palmina N.P. IR spectroscopy of thin water layers and the mechanism of action α-tocopherol in ultra low concentrations. Doklady Akademii Nauk. 2011;439(1):68–71 (in Russ.).]
15. Brevik I., Shapovalov A.V. Effects of low concentration in aqueous solutions within the fractal approach. Russ. Phys. J. 2022;65(2):197–207 (in Russ.). https://doi:10.1007/s11182-022-02623-3 [Original Russian Text: Brevik I., Shapovalov A.V. Effects of low concentration in aqueous solutions within the fractal approach. Izvestiya Vysshikh Uchebnykh Zavedenii. Fizika. 2022;65(2):3–13 (in Russ.). https://doi.org/10.17223/00213411/65/2/3 ]
16. Shishkina A.V., Ksenofontov A.A., Penkov N.V., Vener M.V. Diclofenac ion hydration: experimental and theoretical search for anion pairs. Molecules. 2022;27(10):3350. https://doi.org/10.3390/molecules27103350
17. Slatinskaya O.V., Pyrkov Yu.N., Filatova S.A., Guryev D.A., Penkov N.V. Study of the effect of europium acetate on the intermolecular properties of water. Front. Phys. 2021;9:641110. https://doi.org/10.3389/fphy.2021.641110
18. Penkov N.V. Peculiarities of the perturbation of water structure by ions with various hydration in concentrated solutions of CaCl2 , CsCl, KBr, and KI. Phys. Wave Phen. 2019;27(2):128–134. https://doi.org/10.3103/S1541308X19020079
19. Penkov N., Fesenko E. Development of terahertz time-domain spectroscopy for properties analysis of highly diluted antibodies. Appl. Sci. 2020;10(21):7736. https://doi.org/10.3390/app10217736
20. Penkov N. Antibodies processed using high dilution technology distantly change structural properties of IFNγ aqueous solution. Pharmaceutics. 2021;13(11):1864. https://doi.org/10.3390/pharmaceutics13111864
21. Tarasov S.A., Gorbunov E.A., Don E.S., Emelyanova A.G., Kovalchuk A.L., Yanamala N., Schleker A.S.S., Klein-Seetharaman J., Groenestein R., Tafani J-P., van der Meide P., Epstein O.I. Insights into the mechanism of action of highly diluted biologics. J. Immunol. 2020;205(5):1345–1354. https://doi.org/10.4049/jimmunol.2000098
22. Woods K.N. Modeling of protein hydration dynamics is supported by THz spectroscopy of highly diluted solutions. Front. Chem. 2023;11:1131935. https://doi.org/10.3389/fchem.2023.1131935
23. Bunkin N.F., Shkirin A.V., Ninham B.W., Chirikov S.N., Chaikov L.L., Penkov N.V., Kozlov V.A., Gudkov S.V. Shaking-induced aggregation and flotation in immunoglobulin dispersions: differences between water and water-ethanol mixtures. ACS Omega. 2020;5(24):14689–14701. https://doi.org/10.1021/acsomega.0c01444
24. Chikramane P.S., Kalita D., Suresh A.K., Kane S.G., Bellare J.R. Why extreme dilutions reach non-zero asymptotes: a nanoparticulate hypothesis based on froth flotation. Langmuir. 2012;28(45):15864–15875. https://doi.org/10.1021/la303477s
25. Vainshtein B.K. Sovremennaya kristallografiya: v 4 t. T. 3. Obrazovanie kristallov (Modern Crystallography: in 4 v. Vol. 3. Formation of Crystals). Moscow: Nauka; 1980. 408 p. (in Russ.).
26. Koldobskaya M.F., Gavrilova I.V. Growing large faceted TGS crystals in laboratory conditions. In: Rost kristallov (Crystal Growth). Moscow: AN USSR; 1961. V. 3. P. 278–282 (in Russ.).
27. Malekfar R., Daraei A. Raman scattering and electrical properties of TGS:PCo (9%) crystal as ambient temperature IR detector. Acta Physica Polonica A. 2008;114(4):859–867. http://doi.org/10.12693/APhysPolA.114.859
28. Zheludev I.S. Physics of Crystalline Dielectrics. V. 1. Crystallography and Spontaneous Polarization. New York: Springer; 1971. 346 p. https://doi.org/10.1007/978-1-4684-8076-4
29. Krauklis I.V., Tulub A.V., Golovin A.V., et al. Raman spectra of glycine and their modeling in terms of the discrete–continuum model of their water solvation shell. Opt. Spectrosc. 2020;128(10):1598–1601. https://doi.org/10.1134/S0030400X20100161 [Original Russian Text: Krauklis I.V., Tulub A.V., Golovin A.V., Chelibanov V.P. Raman spectra of glycine and their modeling in terms of the discrete–continuum model of their water solvation shell. Optika i Spektroskopiya. 2020;128(10):1488–1491 (in Russ.). https://doi.org/10.21883/OS.2020.10.50019.161-20 ]
30. Gavrilova N.D., Malyshkina I. A. The influence of changes in the structure of hydrogen bonds of water on the electrophysical properties of matrix-water systems in stepwise heating. Moscow Univ. Phys. 2018;73(6):651–658. https://doi.org/10.3103/S0027134918060127 [Original Russian Text: Gavrilova N.D., Malyshkina I. A. The influence of changes in the structure of hydrogen bonds of water on the electrophysical properties of matrix-water systems in stepwise heating. Vestnik Moskovskogo Universiteta. Seriya 3. Fizika. Astronomiya. 2018;(6):74–80 (in Russ.). URL: http://vmu.phys.msu.ru/file/2018/6/18-6-074.pdf ]
Supplementary files
|
1. Glycine groups and intermolecular hydrogen bonds in the triglycine sulfate molecule | |
Subject | ||
Type | Исследовательские инструменты | |
View
(347KB)
|
Indexing metadata ▾ |
The effect of solutions of the technologically processed antibodies to interferon-gamma added to a parent solution on the growth of TGS single crystals is established. This effect manifests in the changing in occupancy of the proton sublattice of the crystal grown from the parent solution containing technologically processed antibodies to interferon-gamma, as compared with the crystals grown from the control solutions. In the case of the crystal grown from the solution containing technologically processed antibodies to interferon-gamma, this change in the occupancy of the proton lattice is expressed in an increase in the length of N2–C3 bonds.
Review
For citations:
Stepanov G.O., Rodionova N.N., Konstantinov R.R., Subbotin K.A. Effect of adding technologically processed antibodies to interferon-gamma into a parent solution on the structural features of triglycine sulfate crystals grown from this solution. Fine Chemical Technologies. 2023;18(6):517-533. https://doi.org/10.32362/2410-6593-2023-18-6-517-533