Preview

Fine Chemical Technologies

Advanced search

Analysis of phase trajectories for studying the operational evolution of catalytic systems

https://doi.org/10.32362/2410-6593-2023-18-4-328-340

Abstract

Objectives. To establish details of catalytic systems operation using the kinetic method with no needs for the differentiation of primary experimental kinetic data.

Methods. Analysis of the time patterns of differential selectivity and relative reactivity of substrates in parallel or competing reactions was used.

Results. For various coupling reactions of aryl halides and nucleophiles, the possibility to obtain the data about the evolution of the catalytic systems and patterns of the changes of catalytically active species under dynamic transformations of several active and inactive catalyst forms was demonstrated.

Conclusions. The analysis of the evolution of differential selectivity and relative reactivity under competing or parallel reactions is the useful tool for discrimination between probable hypotheses of complex catalytic process operation.

About the Authors

A. F. Schmidt
Irkutsk State University
Russian Federation

Alexander F. Schmidt, Dr. Sci. (Chem.), Full Professor, Professor, Department of Physical and Colloid Chemistry,
Rector

1, K. Marksa ul., Irkutsk, 664003



A. A. Kurokhtina
Irkutsk State University
Russian Federation

Anna A. Kurokhtina, Cand. Sci. (Chem.), Associate Professor, Department of Physical and Colloid Chemistry

1, K. Marksa ul., Irkutsk, 664003



E. V. Larina
Irkutsk State University
Russian Federation

Elizaveta V. Larina, Cand. Sci. (Chem.), Researcher, Institute of Oil and Coal Chemical Synthesis

1, K. Marksa ul., Irkutsk, 664003



N. A. Lagoda
Irkutsk State University
Russian Federation

Nadezhda A. Lagoda, Junior Researcher, Institute of Oil and Coal Chemical Synthesis

1, K. Marksa ul., Irkutsk, 664003



References

1. Moiseev I.I, Vargaftik M.N. Metal complex catalysis of oxidation reactions: principles and problems. Russ. Chem. Rev. 1990;59(12):1133–1149. https://doi.org/10.1070/RC1990v059n12ABEH003582 [Original Russian Text: Moiseev I.I, Vargaftik M.N. Metal complex catalysis of oxidation reactions: principles and problems. Uspekhi khimii. 1990;59(12):1931–1959 (in Russ.). URL: https://www.uspkhim.ru/RCR3582pdf]

2. Bhaduri S., Mukesh D. Homogeneous Catalysis: Mechanisms and Industrial Applications. Wiley-Interscience; 2000. 288 p.

3. Durakov S.A., Kolobov A.A., Flid V. R. Features of heterogeneous catalytic transformations of strained carbocyclic compounds of the norbornene series. Tonk. Khim. Tekhnol. = Fine Chem. Technol. 2022;17(4):275–297. https://doi.org/10.32362/2410-6593-2022-17-4-275-297

4. Bond G.C., Cunningham R.H. Alkane transformations on supported platinum catalysts. 4. Kinetics of hydrogenolysis of ethane, propane, and n-butane on Pt/Al2 O3 (EUROPT-3) and PtRe/Al2 O3 (EUROPT-4). J. Catalysis. 1997;166(2):172–185. https://doi.org/10.1006/jcat.1997.1490

5. Moiseev I.I., Pestrikov S.V. Butene isomerization initiated by palladium chloride. Dokl. Akad. Nauk SSSR. 1966;171:151–154 (in Russ.).

6. Temkin O.N. Homogeneous Catalysis with Metal Complexes. Kinetic Aspects and Mechanisms Chichester: Wiley; 2012. 803 p. https://doi.org/10.1002/9781119966227 [Temkin O.N. Gomogennyi metallokompleksnyi kataliz. Kineticheskie aspekty (Homogeneous Metal Complex Catalysis. Kinetic Aspects). Moscow: Akademkniga; 2008. 918 p. (in Russ.).]

7. Temkin O.N. Kinetic models of multi-route reactions in homogeneous catalysis with metal complexes (A Review). Kinet. Catal. 2012;53(3):313–343. https://doi.org/10.1134/S0023158412030123 [Original Russian Text: Temkin O.N. Kinetic models of multi-route reactions in homogeneous catalysis with metal complexes (A Review). Kinetika i Kataliz. 2012;53(3):326–357 (in Russ.).]

8. Zeigarnik A.V., Bruk L.G., Temkin O.N., Likholobov V.A., Maier L.I. Computer-aided studies of reaction mechanisms. Russ. Chem. Rev. 1996;65(2):117–130. https://doi.org/10.1070/RC1996v065n02ABEH000202 [Original Russian Text: Zeigarnik A.V., Bruk L.G., Temkin O.N., Likholobov V.A., Maier L.I. Computer-aided studies of reaction mechanisms. Uspekhi khimii. 1996;65(2):125–139 (in Russ.).]

9. Schmidt A.F., Kurokhtina A.A., Larina, E.V. Simple kinetic method for distinguishing between homogeneous and heterogeneous mechanisms of catalysis, illustrated by the example of “ligand-free” Suzuki and Heck reactions of aryl iodides and aryl bromides. Kinet. Catal. 2012;53(1):84–90. https://doi.org/10.1134/S0023158412010107 [Original Russian Text: Schmidt A.F., Kurokhtina A.A., Larina, E.V. Simple kinetic method for distinguishing between homogeneous and heterogeneous mechanisms of catalysis, illustrated by the example of “ligand-free” Suzuki and Heck reactions of aryl iodides and aryl bromides. Kinetika i Kataliz. 2012;53(1):86–93 (in Russ.).]

10. Schmidt A.F., Kurokhtina A.A., Larina E.V. Analysis of Differential Selectivity Using Phase Trajectories of Catalytic Reactions: New Aspects and Applications. Kinet. Catal. 2019:60(5):551–572. https://doi.org/10.1134/S0023158419050100 [Original Russian Text: Schmidt A.F., Kurokhtina A.A., Larina E.V. Analysis of Differential Selectivity Using Phase Trajectories of Catalytic Reactions: New Aspects and Applications. Kinetika i Kataliz. 2019:60(5):555–577 (in Russ.). https://doi.org/10.1134/S0453881119050113 ]

11. Albiñana A.P., El Haskouri J., Marcos D.M., Estevan F., Amorós P., Úbeda M.Á., Pérez-Pla F. A new efficient, highly dispersed, Pd nanoparticulate silica supported catalyst synthesized from an organometallic precursor. Study of the homogeneous vs. heterogeneous activity in the Suzuki-Miyaura reaction. J. Catal. 2018;367:283–295. https://doi.org/10.1016/j.jcat.2018.09.014

12. Ploeger M.L., Buslov I., Hu, X. Mechanistic investigations of nickamine-catalyzed hydrosilylation of alkenes: Nickel nanoparticles are the active species. Chimia. 2020;74(6);444–449. https://doi.org/10.2533/CHIMIA.2020.444

13. Kurokhtina A.A., Larina E.V., Yarosh E.V., Lagoda N.A., Schmidt A.F. Mechanistic Study of Direct Arylation of Indole Using Differential Selectivity Measurements: Shedding Light on the Active Species and Revealing the Key Role of Electrophilic Substitution in the Catalytic Cycle. Organometallics. 2018;37(13):2054–2063. https://doi.org/10.1021/acs.organomet.8b00216

14. Larina E.V., Kurokhtina A.A., Vidyaeva E.V., Lagoda N.A., Schmidt A.F. Experimental evidence for the direct involvement of Pd(0) and Pd(II) anionic phosphine complexes in the Mizoroki–Heck coupling reaction. Mol. Catal. 2021;513:111778. https://doi.org/10.1016/j.mcat.2021.111778

15. Belykh L.B., Skripov N.I., Sterenchuk T.P., Kornaukhova T.A., Milenkaya E.A., Schmidt F.K. Competitive hydrogenation of alkynes and olefins: Application for the analysis of size sensitivity. Mol. Catal. 2022;528:112509. https://doi.org/10.1016/j.mcat.2022.112509

16. Skripov N.I., Belykh L.B., Sterenchuk T.P., Gvozdovskaya K.L., Zherdev V.V., Dashabylova T.M., Schmidt F.K. Palladium-Phosphorus Nanoparticles as Effective Catalysts of the Chemoselective Hydrogenation of Alkynols. Kinet. Catal. 2020;61(4):575–588. https://doi.org/10.1134/S0023158420030209 [Original Russian Text: Skripov N.I., Belykh L.B., Sterenchuk T.P., Gvozdovskaya K.L., Zherdev V.V., Dashabylova T.M., Schmidt F.K. Palladium-Phosphorus Nanoparticles as Effective Catalysts of the Chemoselective Hydrogenation of Alkynols. Kinetika i Kataliz. 2020;61(4):526–539 (in Russ.). https://doi.org/10.31857/S0453881120030247 ]

17. Schmidt A.F., Kurokhtina A.A., Larina E.V., Vidyaeva E.V., Lagoda N.A. Is oxidative addition indeed the rate-determining step of the Suzuki–Miyaura reaction with less-reactive aryl chlorides under “ligand-free” conditions? J. Organomet. Chem., 2020;929:121571. https://doi.org/10.1016/j.jorganchem.2020.121571

18. Schmidt A.F., Kurokhtina A.A., Larina E.V. Differential selectivity measurements and competitive reaction methods as effective means for mechanistic studies of complex catalytic reactions. Catal. Sci. Technol. 2014;4(10):3439–3457. https://doi.org/10.1039/C4CY00479E

19. Köhler K., Kleist W., Pröckl S.S. Genesis of coordinatively unsaturated palladium complexes dissolved from solid precursors during Heck coupling reactions and their role as catalytically active species. Inorg. Chem. 2007;46(6):1876–1883. https://doi.org/10.1021/ic061907m

20. Suzuki A. Cross-coupling reactions of organoboranes: An easy way to construct C–C bonds (Nobel Lecture). Angew. Chem. Int. Ed. 2011;50(30):6722–6737. https://doi.org/10.1002/anie.201101379

21. Thomas A.A., Denmark S.E. Pre-transmetalation intermediates in the Suzuki-Miyaura reaction revealed: The missing link. Science. 2016;352(6283):329–332. https://doi.org/10.1126/science.aad6981

22. de Vries J.G. A unifying mechanism for all hightemperature Heck reactions. The role of palladium colloids and anionic species. Dalton Trans. 2006;(3):421–429. https://doi.org/10.1039/B506276B

23. Eremin D.B., Ananikov V.P. Understanding active species in catalytic transformations: From molecular catalysis to nanoparticles, leaching, “Cocktails” of catalysts and dynamic systems. Coord. Chem. Rev. 2017;346:2–19. https://doi.org/10.1016/j.ccr.2016.12.021

24. Trzeciak A.M., Augustyniak A.W. The role of palladium nanoparticles in catalytic C–C cross-coupling reactions. Coord. Chem. Rev. 2019;384:1–20. https://doi.org/10.1016/j.ccr.2019.01.008


Supplementary files

1. Suzuki–Miyaura reaction under competition of two aryl halides.
Subject
Type Исследовательские инструменты
View (98KB)    
Indexing metadata ▾
  • For various coupling reactions of aryl halides and nucleophiles, the possibility to obtain the data about the evolution of the catalytic systems and patterns of the changes of catalytically active species under dynamic transformations of several active and inactive catalyst forms was demonstrated.
  • The analysis of the evolution of differential selectivity and relative reactivity under competing or parallel reactions is the useful tool for discrimination between probable hypotheses of complex catalytic process operation.

Review

For citations:


Schmidt A.F., Kurokhtina A.A., Larina E.V., Lagoda N.A. Analysis of phase trajectories for studying the operational evolution of catalytic systems. Fine Chemical Technologies. 2023;18(4):328-340. https://doi.org/10.32362/2410-6593-2023-18-4-328-340

Views: 444


ISSN 2410-6593 (Print)
ISSN 2686-7575 (Online)