Analysis of nanoparticles and nanomaterials using X-ray photoelectron spectroscopy
https://doi.org/10.32362/2410-6593-2023-18-2-135-167
Abstract
Objectives. The main aim of this review is to summarize the existing knowledge on the use of X-ray photoelectron spectroscopy (XPS) for the characterization of nanoparticles and nanomaterials.
Results. XPS or electron spectroscopy for chemical analysis can provide information on the qualitative and quantitative composition, valence states of the elements of the samples under study, the chemical composition of the surface and interfaces that determine the properties of nanoparticles and nanostructured materials. The review describes the role of several different methods for the characterization of nanomaterials, highlights their advantages and limitations, and the possibilities of an effective combination. The main characteristics of XPS are described. Various examples of its use for the analysis of nanoparticles and nanomaterials are given in conjunction with additional methods to obtain complementary information about the object under study.
Conclusions. XPS provides depth information comparable to the size of nanoparticles (up to 10 nm depth from the surface) and does not cause significant damage to the samples. Two disadvantages of XPS analysis are sample preparation requiring a dry solid form without contaminations and data interpretation. XPS provides information not only on the chemical identity, but also on the dielectric properties of nanomaterials, recording their charging/discharging behavior. Chemical information from the surface of nanoparticles analyzed by XPS can be used to estimate the thickness of nanoparticle coatings. XPS has a high selectivity, since the resolution of the method makes it possible to distinguish a characteristic set of lines in the photoelectron spectrum at kinetic energies determined by the photon energy and the corresponding binding energies in elements. The intensity of the lines depends on the concentration of the respective element. Obtaining a sufficiently complete picture of the properties of nanomaterials requires the use of a group of complementary instrumental methods of analysis.
About the Authors
A. A. IschenkoRussian Federation
Anatoly A. Ischenko - Dr. Sci. (Chem.), Professor, Head of the I.P. Alimarin Department of Analytical Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University.
86, Vernadskogo pr., Moscow, 119571
Scopus Author ID 6701507307, ResearcherID B-2767-2014
Competing Interests:
None
M. A. Lazov
Russian Federation
Mikhail A. Lazov - Cand. Sci. (Chem.), Assistant Professor, I.P. Alimarin Department of Analytical Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University.
86, Vernadskogo pr., Moscow, 119571
Scopus Author ID 56466030700
Competing Interests:
None
E. V. Mironova
Russian Federation
Elena V. Mironova - Senior Lecturer, I.P. Alimarin Department of Analytical Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University.
86, Vernadskogo pr., Moscow, 119571
Competing Interests:
None
A. Yu. Putin
Russian Federation
Alexey Yu. Putin - Cand. Sci. (Chem.), Assistant Professor, Department of General Chemical Technology, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University.
86, Vernadskogo pr., Moscow, 119571
Competing Interests:
None
A. M. Ionov
Russian Federation
Andrey M. Ionov - Dr. Sci. (Phys.-Math.), Professor, Leading Researcher, Osipyan Institute of Solid State Physics, Russian Academy of Sciences.
2, Akademika Osip'yana ul., Chernogolovka, Moscow oblast, 142432
Competing Interests:
None
P. A. Storozhenko
Russian Federation
Pavel A. Storozhenko - Academician at the Russian Academy of Sciences, Dr. Sci. (Chem.), Professor, Scientific Director of State Scientific Research Institute of Chemistry and Technology of Organoelement Compounds.
38, Entuziastov shosse, Moscow, 111123
Scopus Author ID 9633186700, ResearcherID D-4645-214
Competing Interests:
None
References
1. Eliseev A.A., Lukashin A.V. Funktsional'nye nanomaterialy (Tretyakov Yu.D. (Ed.). Functional Nanomaterials). Moscow: FIZMATLIT; 2010. 456 c. (in Russ.). ISBN 978-5-9221-1120-1
2. Chaudhuri R.G., Paria S. Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem. Rev. 2012;112(4):2373-2433. https://doi.org/10.1021/cr100449n
3. Ischenko A.A., Fetisov G.V., Aslanov L.A. Nanosilicon: properties, synthesis, applications, methods of analysis and control. London: CRC, Taylor & Francis; 2015. 727 p. Original Russian Text: Ischenko A.A., Fetisov G.V., Aslanov L.A. Nanokremnii: svoistva, poluchenie, primenenie, metody issledovaniya i kontrolya (Nanosilicon: properties, synthesis, applications, methods of analysis and control). Moscow: FIZMATLIT; 2013. 614 p. (in Russ.). ISBN 978-5-9221-1369-4
4. Borisenko V.E. Nanoelectronics - a basis of information systems for the 21st century. Sorosovskii Obrazovatel'nyi Zhurnal = Soros Educational Journal. 1997;(5):100-104 (in Russ.). URL: http://www.pereplet.ru/nauka/Soros/pdf/9705_100.pdf
5. Osetrov A.Yu., Vigdorovich V.I. Modern nano technologies. State, problems, and perspectives. Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki = Tambov University Reports. Series: Natural and Technical Sciences. 2013;18(5):2371-2374 (in Russ.).
6. Demikhovskii V.Ya. Quantum wells, wires and dots. Sorosovskii Obrazovatel'nyi Zhurnal = Soros Educational Journal. 1997;(5):80-86 (in Russ.). URL: http://window.edu.ru/resource/993/20993/files/9705_080.pdf
7. Shik A.Ya. Guantum wires. Sorosovskii Obrazovatel'nyi Zhurnal = Soros Educational Journal. 1997;(5):87-92 (in Russ.). URL: http://pereplet.ru/nauka/Soros/pdf/9705_087.pdf
8. Peter Ju., Kardona Yu.M. Osnovy fiziki poluprovodnikov (Fundamentals of semiconductor physics: transl. from Engl). Moscow: FIZMATLIT; 2002. 560 p. (in Russ.). ISBN 5-9221-0268-0
9. Peter Y., Cardona Yu.M. Fundamentals of semiconductors: Physics and materials properties (Graduate texts in physics). 4th ed. Berlin-Heidelberg: Springer-Verlag; 2010. 775 p. ISBN 978-364-200-709-5
10. Hamaguchi C. Basic semiconductors physics. 2nd ed. Berlin Heidelberg: Springer-Verlag; 2010. 570 p. ISBN 978-3-642-03302-5
11. Baer D.R., Amonette J.E., Engelhard M.H., Gaspar D.J., Karakoti A.S., Kuchibhatla S., Nachimuthu P., Nurmi J.T., Qiang Y., Sarathy V., Seal S., Sharma A., Tratnyek P.G., Wang C.-M. Characterization challenges for nanomaterials. Surf. Interface Anal. 2008;40(3-4):529-537. https://doi.org/10.1002/sia.2726
12. Koole R., Groeneveld E., Vanmaekelbergh D., Meijerink A., de Mello Donega C. Size Effects on Semiconductor Nanoparticles. In: de Mello Donega C. (Ed.) Nanoparticles. Berlin, Heidelberg: Springer; 2014. 299 p. https://doi.org/10.1007/978-3-662-44823-6_2
13. Sun C.Q. Relaxation of the Chemical Bond. Skin Chemisorption Size Matter ZTP Mechanics H2O Myths. Singapore: Springer Science & Business Media; 2014. 807 p. https://doi.org/10.1007/978-981-4585-21-7
14. Attia Y., Samer M. Metal clusters: New era of hydrogen production. Renew. Sust. Energ. Rev. 2017;79:878-892. https://doi.org/10.1016/j.rser.2017.05.113
15. Jin R., Li G., Sharma S., Li Y., Du X. Toward Active-Site Tailoring in Heterogeneous Catalysis by Atomically Precise Metal Nanoclusters with Crystallographic Structures. Chem. Rev. 2021;121(2):567-648. https://doi.org/10.1021/acs.chemrev.0c00495
16. Liu L., Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 2018;118(10):4981-5079. https://doi.org/10.1021/acs.chemrev.7b00776
17. Cuenya B.R. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films. 2010;518(12):3127-3150. https://doi.org/10.1016/j.tsf.2010.01.018
18. Wang H., Wang L., Lin D., Feng X., Niu Y., Zhang B., Xiao F.S. Strong metal-support interactions on gold nanoparticle catalysts achieved through Le Chatelier's principle. Nat. Catal. 2021;4(5):418-424. https://doi.org/10.1038/s41929-021-00611-3
19. Chen M.S., Goodman D.W. Structure-activity relationships in supported Au catalysts. Catal. Today. 2006;111(1-2):22-33. https://doi.org/10.1016/j.cattod.2005.10.007
20. Cheng N., Zhang L., Doyle-Davis K., Sun X. Single-Atom Catalysts: From Design to Application. Electrochem. Energ. Rev. 2019;2(4):539-573. https://doi.org/10.1007/s41918-019-00050-6
21. Rong H., Ji S., Zhang J., Wang D., Li Y. Synthetic strategies of supported atomic clusters for heterogeneous catalysis. Nat. Commun. 2020;11:5884(14 p.). https://doi.org/10.1038/s41467-020-19571-6
22. Zhang Y., Yang J., Ge R., Zhang J., Cairney J.M., Li Y., Zhu M., Li S., Li W. The effect of coordination environment on the activity and selectivity of single-atom catalysts. Coord. Chem. Rev. 2022;461:214493(48 p.). https://doi.org/10.1016/j.ccr.2022.214493
23. Sankar M., He Q., Engel R.V., Sainna M.A., Logsdail A.J., Roldan A., Willock D.J., Agarwal N., Kiely C.J., Hutchings G.J. Role of the support in gold-containing nanoparticles as heterogeneous catalysts. Chem. Rev. 2020;120(8):3890-3938. https://doi.org/10.1021/acs.chemrev.9b00662
24. Jiang Zh., Zhang W., Jin L., Yang X., Xu F., Zhu J., Huang W. Direct XPS Evidence for Charge Transfer from a Reduced Rutile TiO2(110) Surface to Au Clusters. J. Phys. Chem. C. 2007;111(33): 12434-12439. https://doi.org/10.1021/jp073446b
25. Haruta M. Size- and support-dependency in the catalysis of gold. Catal. Today. 1997;36(1):153-166. https://doi.org/10.1016/S0920-5861(96)00208-8
26. Kung M.C., Lee J.H., Chu-Kang A., Kung H.H. Selective reduction of NO* by propene over Au/y-Al2O3 catalysts. Stud. Surf. Sci. Catal. A. 1996;101:701-707. https://doi.org/10.1016/s0167-2991(96)80281-3
27. Ueda A., Oshima T., Haruta M. Reduction of nitrogen monoxide with propene in the presence of oxygen and moisture over gold supported on metal oxides. Appl. Catal. B. 1997;12(2-3):81-93. https://doi.org/10.1016/s0926-3373(96)00069-0
28. Sanchez R.M.T., Ueda A., Tanaka K., Haruta M. Selective oxidation of CO in hydrogen over gold supported on manganese oxide. J. Catal. 1997;168(1):125-127. https://doi.org/10.1006/jcat.1997.1636
29. Smolentseva E.V., Bogdanchikova N.E., Simakov A.V., Pestryakov A.N., Tuzovskaya I.V., Avalos M., Farias M., Diaz A. Influence of modifyning agent on physical and chemical properties and catalytic properties of gold zeolite catalysts. Izvestiya Tomskogo politekhnicheskogo universiteta = Bulletin of the Tomsk Polytechnic University. 2005;308(4):93-98 (in Russ.).
30. Shubhashish S., Karasik S.J., Posada L.F., Amin A.S., Achola L.A., Nisly N., Willis W.S., Suib S.L. Syntheses of gold supported on metal oxides and their application in organic transformations. Microporous Mesoporous Mater. 2022;336:111888(p.). https://doi.org/10.1016/j.micromeso.2022.111888
31. Lin J.N., Chen J.H., Hsiao C.Y., Kang Y.-M., Wan B. Gold supported on surface acidity modified Y-type and iron/Y-type zeolite for CO-oxidation. Appl. Catal. B. 2002;36(1):19-29. https://doi.org/10.1016/s0926-3373(01)00276-4
32. Espinos J.P., Morales J., Barranco A., Caballero A., Holgado J.P., Gonzalez-Elipe A. Interface Effects for Cu, CuO, and Cu2O Deposited on SiO2 and ZrO2. XPS Determination of the Valence State of Copper in Cu/SiO2 and Cu/ZrO2 Catalysts. J. Phys. Chem. B. 2002;106(27):62921-6929. https://doi.org/10.1021/jp014618m
33. Mazalova V.N., Kravtsova A.N., Soldatov A.V. Nanoklastery. Rentgenospektral'nye issledovaniya i komp'yuternoe modelirovanie (Nanoclusters. X-ray spectral studies and computer modeling). Moscow: FIZMATLIT; 2013. 184 p. (in Russ.).
34. Sacher E. Asymmetries in Transition Metal XPS Spectra: Metal Nanoparticle Structure, and Interaction with the Graphene-Structured Substrate Surface. Langmuir. 2010;26(6):3807-3814. https://doi.org/10.1021/la902678x
35. Alov N.V., Kutsko D. M., Bordo K.V. Ion-beam reduction of the surface of higher oxides of molybdenum and tungsten. J. Surf. Investig. 2008;(2):184-188. https://doi.org/10.1134/S1027451008020043. Original Russian Text: Alov N.V., Kutsko D.M., Bordo K.V. Ion-beam reduction of the surface of higher oxides of molybdenum and tungsten. Poverkhnost'. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya = Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques. 2008;(3):17-22 (in Russ.).
36. Alov N.V., Kutsko D.M. Surface composition modification of tungsten higher oxide upon He+ ion bombardment. J. Surf. Investing. 2008;6(2):225-228. https://doi.org/10.1134/S1027451012030032. Original Russian Text: Alov N.V., Kutsko D.M. Surface composition modification of tungsten higher oxide upon He+ ion bombardment. Poverkhnost'. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya = Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques. 2012;(3):38-41 (in Russ.).
37. Alov N., Kutsko D., Spirovova I., Bastl Z. XPS study of vanadium surface oxidation by oxygen ion bombardment. Surf. Sci. 2006;600(8):1628-1631. https://doi.org/10.1016/j.susc.2005.12.052
38. Alov N.V., Kutsko D.M. Ion Beam Reduction of the Surface of Higher Niobium Oxide. J. Surf. Investing. 2010;4(2):232-235. https://doi.org/10.1134/S1027451010020096. Original Russian Text: Alov N.V., Kutsko D.M. Ion Beam Reduction of the Surface of Higher Niobium Oxide. Poverkhnost'. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya = Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques. 2010;(3):66-70 (in Russ.).
39. Khanuja M., Sharma H., Mehta B.R., Shivaprasad S.M. XPS depth-profile of suboxide distribution at the native oxide/Ta interface. J. Electron. Spectrosc. Relat. Phenom. 2009;169(1):41-45. https://doi.org/10.1016/j.elspec.2008.10.004
40. Alov N.V., Kutsko D. M. Ion Beam Reduction of the Surface of Tantalum Higher Oxide. J. Surf. Investing. 2011;5(2):259-262. https://doi.org/10.1134/S1027451011030037. Original Russian Text: Alov N.V., Kutsko D.M. Ion Beam Reduction of the Surface of Tantalum Higher Oxide. Poverkhnost'. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya = Journal of Surface Investigation. X-Ray, Synchrotron and Neutron Techniques. 2011;(3):59-62 (in Russ.).
41. Pradeep T., Anshup. Noble metal nanoparticles for water purification: A critical review. Thin Solid Films. 2009;517(24):6441-6478. https://doi.org/10.1016/j.tsf.2009.03.195
42. Kuzmicheva G.M. Nanosized phases with titanium(IV) oxides. Preparation. Characterisation. Properties. Fine Chem. Technol. 2015;10(6):5-36 (in Russ.).
43. Siciliano P. Preparation, characterisation and applications of thin films for gas sensors prepared by cheap chemical method. Sens. Actuat. B: chem. 2000;70(1-3):153-164. https://doi.org/10.1016/s0925-4005(00)00585-2
44. Antipin I.S., et al. Functional supramolecular systems: design and applications. Russ. Chem. Rev. 2021;90(8):895-1107. https://doi.org/10.1070/RCR5011
45. Ding P., Chen L., Wei C., Zhou W., Li C., Wang J., Wang M., Guo X., Stuart M.A.C., Wang J. Efficient Synthesis of Stable Polyelectrolyte Complex Nanoparticles by Electrostatic Assembly Directed Polymerization. Macromol. Rapid Comm. 2021;42(4):2000635(1-9). https://doi.org/10.1002/marc.202000635
46. Stuart M.A.C. Supramolecular perspectives in colloid science. Colloid Polym, Sci. 2008;286(8-9):855-864. https://doi.org/10.1007/s00396-008-1861-7
47. Mourdikoudis S., Pallares R.M., Thanh N.T.K. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018;10(27):12871-12934. https://doi.org/10.1039/C8NR02278J
48. Grainger D.W., Castner D.G. Nanobiomaterials and nanoanalysis: opportunities for improving the science to benefit biomedical technologies. Adv. Mater. 2008;20(5):867-877. https://doi.org/10.1002/adma.200701760
49. Montano M.D., Ranville J., Lowry G.V., Blue J., Hiremath N., Koenig S., Tuccillo M.E., Gardner S.P. Detection and Characterization of Engineered Nanomaterials in the Environment: Current State-of-the-Art and Future Directions. Washington, DC: U.S. Environmental Protection Agency Office of Research and Development. 2020.186 p. URL: https://clu-in.org/download/techfocus/nano/Nano-Gardner-600-r-14-244.pdf
50. Baer D.R., Engelhard M.H. XPS analysis of nanostructured materials and biological surfaces. J. Electron Spectrosc. 2010;178-179:415-432. https://doi.org/10.1016Zj.elspec.2009.09.003
51. Koroleva M.Yu., Yurtov E.V. Ostwald ripening in macro- and nanoemulsions. Uspekhi khimii = Russ. Chem. Rev. 2021;90(3):293-323 https://doi.org/10.1070/RCR4962
52. Neoh K.G., Li M., Kang E.-T. Characterization of Nanomaterials/Nanoparticles. In: Kishen A. (Ed.). Nanotechnology on Endodontics: Current and Potential Clinical Applications. Switzerland: Springer International Publishing; 2015. P 23-44. https://doi.org/10.1007/978-3-319-13575-5_3
53. Ischenko А.А., Weber P.M., Miller R.J.D. Transient structures and chemical reaction dynamics. Russ. Chem. Rev. 2017;86(12):1173-1253. https://doi.org/10.1070/RCR4754
54. Ischenko А.А., Fetisov G.V. Structural dynamics: in 2 v. Moscow: FIZMATLIT; 2021. V. 1. 486 p. ISBN 978-5-9221-1936-9. V. 2. 467 p. ISBN 978-5-9221-1937-5 (in Russ.).
55. Nguyen M.T., Nefedov V.I., Chekalkin N.S., Kozlovsky I.V., Malafeev A.V., Mirolyubova N.A., Nazarenko M.A. On the integration of the methods of forming and research of images of objects against the background of noises and interference. Russ. Technol. J. 2020;8(2):33-42 (in Russ.). https://doi.org/10.32362/2500-316X-2020-8-2-33-42
56. Aseyev S.A., Ischenko A.A., Kompanets V.O., Kochikov I.V., Malinovskii A.L., Mironov B.N., Poydashev D.G., Chekalin S.V., Ryabov E.A. Study of the Processes Induced by Femtosecond Laser Radiation in Thin Films and Molecular- Cluster Beams Using Ultrafast Electron Diffraction. Crystallogr. Rep. 2021;66(6):1031-1037. https://doi.org/10.1134/S106377452106002X
57. Baer D.R. Guide to making XPS measurements on nanoparticles. J. Vac. Sci. Technol. A. 2020;38(3):031201. https://doi.org/10.1116/1.5141419
58. Krishna D.N.G., Philip J. Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): Recent developments and challenges. Appl. Surface Sci. Adv. 2022;12:100332(30 p). https://doi.org/10.1016/j.apsadv.2022.100332
59. Baer D.R., Gaspar D.J., Nachimuthu P., Techane S., Castner D. Application of surface chemical analysis tools for characterization of nanoparticles. Anal. Bioanal. Chem. 2010;396(3):983-1002. https://doi.org/10.1007/s00216-009-3360-1
60. Saveleva V.A., Savinova E.R. Insights into electrocatalysis from ambient pressure photoelectron spectroscopy. Curr. Opin. Electrochem. 2019;17:79-89. https://doi.org/10.1016/j.coelec.2019.03.016
61. Arble C., Jia M., Newberg J.T. Lab-based ambient pressure X-ray photoelectron spectroscopy from past to present. Surf. Sci. Rep. 2018;7(2):37-57. https://doi.org/10.1016/j.sur-frep.2018.02.002
62. Vudraf D., Delchar T. Sovremennye metody issledovaniya poverkhnosti (Modern Methods of Surface Research): transl. from Eng. Moscow: Mir; 1989. 564 p. (in Russ.).
63. Alov N.V., Lazov M.A., Ischenko A.A. X-ray photoelectron spectroscopy. In: Analytical Chemistry: textbook: in 3 v. V. 2. Instrumental methods of analysis. Part 1. IschenkoA.A. (Ed.). Chapter 3. P. 191-229. Moscow: FIZMATLIT; 2019. 472 p. (in Russ.). ISBN 978-5-9221-1866-8
64. Shtykov S.N. Chemical Analysis in Nanoreactors: Main Concepts and Applications. J. Analyt Chem. 2002;57(10):859-868. https://doi.org/10.1023/A:1020410605772. Original Russian Text: Shtykov S.N. Chemical Analysis in Nanoreactors: Main Concepts and Applications. Zhurnal analiticheskoi khimii. 2002;57(10):1018-1028 (in Russ.).
65. Troyan V.I., Pushkin M.A., Borman V.D., Tronin V.N. Fizicheskie osnovy metodov issledovaniya nanostruktur i poverkhnosti tverdogo tela (Physical foundations of methods for studying nanostructures and solid surface). Borman V.D. (Ed.). Moscow: MEPhI; 2008. 260 p. (in Russ).
66. Shtykov S.N. Nanoanalytics: definitions, classification, history and primary advances. In: Nanoanalytics: Nanoobjects and Nanotechnologies in Analytical Chemistry. Pt. I: Nanoanalytics: Concepts, Elements, and Peculiarities. Shtykov S.N. (Ed.). Berlin: De Gruyter; 2018. P. 3-52. https://doi.org/10.1515/9783110542011-001
67. Shtykov S.N. Nanoanalytics. In: Analytical Chemistry: textbook: in 3 v. V. 3. Instrumental methods of analysis. Part 2; Ischenko A.A. (Ed.). Chapter 2. P. 96-128. Moscow: FIZMATLIT; 2020. 504 p. (in Russ.). ISBN 978-5-9221-1867-5
68. Oswald S. X-ray Photoelectron Spectroscopy in Analysis of Surfaces. In: Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. John Wiley & Sons; 2013. P. 1-49. https://doi.org/10.1002/9780470027318.a2517
69. Crist B.V. XPS in industry - Problems with binding energies in journals and binding energy databases. J. Electron Spectrosc. 2019;231:75-87. https://doi.org/10.1016/j.elspec.2018.02.005
70. Greczynski G., Hultman L. X-ray photoelectron spectroscopy: Towards reliable binding energy referencing. Prog. Mater. Sci. 2020;107:100591(46 p.). https://doi.org/10.1016/j.pmatsci.2019.100591
71. Bolli E., Kaciulis S., Mezzi A. ESCA as a Tool for Exploration of Metals' Surface. Coatings. 2020;10(12):1182(27 p.). https://doi.org/10.3390/coatings10121182
72. Hofmann S. Auger- and X-ray Photoelectron Spectroscopy in Materials Science. Berlin Heidelberg: Springer-Verlag; 2013. 527 p. https://doi.org/10.1007/978-3-642-27381-0
73. Hufner S. Photoelectron Spectroscopy: Principles and Applications. Berlin Heidelberg: Springer-Verlag; 2003. 661 p.
74. Baer D.R., Artyushkova K., Brundle C.R., Castle J., Engelhard M., Gaskell K., Grant J., Haasch R., Linford M.R., Powell C., Shard A., Sherwood P., Smentkowski V. Practical guides for X-ray photoelectron spectroscopy: First steps in planning, conducting, and reporting XPS measurements. J. Vac. Sci. Technol. A. 2019;37(3):031401. https://doi.org/10.1116/1.5065501
75. Schalm O., Patelli A., Storme P., Crabbe A., Voltolina S., Feyer V., Terryn H. A dataset of high-resolution synchrotron X-ray photoelectron spectra of tarnished silver-copper surfaces before and after reduction with a remote helium plasma at atmospheric pressure. Elsevier, Data in Brief. 2021;35:106872. https://doi.org/10.1016/j.dib.2021.106872
76. Bagus P., Ilton E., Nelin C. The interpretation of XPS spectra: Insights into materials properties. Surf. Sci. Rep. 2013;68(2):273-304. https://doi.org/10.1016/j.surfrep.2013.03.001
77. Powell C.J. Improvements in the reliability of X-ray photoelectron spectroscopy for surface analysis. J. Chem. Educ. 2004;81(12):1734-1741. https://doi.org/10.1021/ed081p1734
78. Powell C.J., Jablonski A. Surface sensitivity of X-ray photoelectron spectroscopy. Nucl. Instrum. Meth. A. 2009;601(1-2):54-65. https://doi.org/10.1016/j.nima.2008.12.103
79. Shard A.G. Detection limits in XPS for more than 6000 binary systems using Al and Mg Ka X-rays. Surf. Interface Anal. 2014;46(3):175-185. https://doi.org/10.1002/sia.5406
80. Jo M. Direct, simultaneous determination of XPS background and inelastic differential cross section using Tougaard's algorithm. Surf. Sci. 1994;320(1-2):191-200. https://doi.org/10.1016/0039-6028(94)91270-X
81. Seah M.P. Background subtraction: I. General behaviour of Tougaard-style backgrounds in AES and XPS. Surf. Sci. 1999;420(2-3):285-294. https://doi.org/10.1016/S0039-6028(98)00852-8
82. Vegh J. The Shirley background revised. J. Electron Spectrosc. 2006;151(3):159-164. https://doi.org/10.1016/j.elspec.2005.12.002
83. Briggs D., Grant J.T. Surface analysis by Auger and X-ray photoelectron spectroscopy. Chichester: IM Publications; 2003. 899 p.
84. Powell C.J. New Data Resources and Applications for AES and XPS (Papers from 6th International Symposium on Practical Surface Analysis (PSA-13)). J. Surf. Anal. 2014;20(3):155-160. https://doi.org/10.1384/jsa.20.155
85. Powell C.J., Jablonski A. Progress in quantitative surface analysis by X-ray photoelectron spectroscopy: current status and perspectives. J. Electron Spectrosc. 2010;178-179:331-346. https://doi.org/10.1016/j.elspec.2009.05.004
86. Powell C.J., Tougaard S., Werner W.S.M., Smekal W. Sample-morphology effects on X-ray photoelectron peak intensities. J. Vac. Sci. Technol. A. 2013;31(2):021402(7 p.). https://doi.org/10.1116/1.4774214
87. Powell C.J., Werner W.S.M., Smekal W. Sample-morphology effects on X-ray photoelectron peak intensities. II. Estimation of detection limits for thin-film materials. J. Vac. Sci. Technol. A. 2014;32(5):050603(6 p.). https://doi.org/10.1116/1.4891628
88. Leckey R. Ultraviolet Photoelectron Spectroscopy of Solids. In: O'Connor D.J., Sexton B.A., Smart R.S.C. (Eds.). Surface Analysis Methods in Materials Science. Springer Series in Surface Sciences. Berlin Heidelberg: Springer; 1993. V. 23. P. 291-300. https://doi.org/10.1007/978-3-662-02767-7_14
89. Doh W. H., Papaefthimiou V., Dintzer T., Dupuis V., Zafeiratos S. Synchrotron Radiation X-ray Photoelectron Spectroscopy as a Tool to Resolve the Dimensions of Spherical Core/Shell Nanoparticles. J. Phys. Chem. C. 2014;118(46):26621-26628. https://doi.org/10.1021/jp508895u
90. Fitch A.N. 2.10 - Synchrotron Methods. In: Constable E.C., Parkin G., Que Jr.L. (Eds.). Comprehensive Coordination Chemistry III. Elsevier; 2021. P. 160-182. ISBN 9780081026892. https://doi.org/10.1016/B978-0-12-409547-2.14660-8
91. Nemsak S., Shavorskiy A., Karslioglu O., Zegkinoglou I., Rattanachata A., Conlon C.S., Keqi A., Greene P.K., Burks E.C., Salmassi F., Gullikson E.M., Yang S.-H., Liu K., Bluhm H., Fadley C.S. Concentration and chemical-state profiles at heterogeneous interfaces with sub-nm accuracy from standing-wave ambient-pressure photoemission. Nat. Commun. 2014;5:5441-5447. https://doi.org/10.1038/ncomms6441
92. Fetisov G.V. X-ray diffraction methods for structural diagnostics of materials: progress and achievements. Phys.-Usp. 2020;63(1)2-32. https://doi.org/10.3367/UFNe.2018.10.038435
93. Karslioglu O., Nemsak S., Zegkinoglou I., Shavorskiy A., Hartl M., Salmassi F., Gullikson E.M., Ng M.L., Rameshan Ch., Rude B., Bianculli D., Cordones A.A., Axnanda S., Crumlin E.J., Ross P.N., Schneider C.M., Hussain Z., Liu Z., Fadley C.S., Bluhm H. Aqueous solution/metal interfaces investigated in operando by photoelectron spectroscopy. Faraday Discuss. 2015;180:35-53. https://doi.org/10.1039/c5fd00003c
94. Kjcrvik M., Hermanns A., Dietrich P, Thissen A., Bahr S., Ritter B., Kemnitz E., Unger W.E.S. Detection of suspended nanoparticles with near-ambient pressure X-ray photoelectron spectroscopy. J. Phys.: Condens. Matter. 2017;29(47):474002(9 p.). https://doi.org/10.1088/1361-648x/aa8b9d
95. Corcoran C.J., Tavassol H., Rigsby M.A., Bagus P., Wieckowski A. Application of XPS to study electrocatalysts for fuel cells. J. Power Sources. 2010;195(24):7856-7879. https://doi.org/10.1016/j.jpowsour.2010.06.018
96. Brown M. A., Redondo A. B., Sterrer M., Winter B., Pacchioni G., Abbas Z., van Bokhoven J.A. Measure of Surface Potential at the Aqueous-Oxide Nanoparticle Interface by XPS from a Liquid Microjet. Nano Lett. 2013;13(11):5403-5407. https://doi.org/10.1021/nl402957y
97. Baer D.R., Engelhard M.H., Johnson J.E., Laskin J., Lai J., Mueller K., Munusamy P., Thevuthasan S., Wang H., Washton N. Surface characterization of nanomaterials and nanoparticles: important needs and challenging opportunities. J. Vac. Sci. Technol. A. 2013;31(5):050820-050854. https://doi.org/10.1116/1.4818423
98. Liu X., Zhang X., Bo V., Li L., Tian H., Nie Y., Sun Y., Xu S., Wang Y, Zheng W., Sun C.Q. Coordination-Resolved Electron Spectrometrics. Chem. Rev. 2015;115(14):6746-6810. https://doi.org/10.1021/cr500651m
99. Sublemontier O., Nicolas C., Aureau D., Patanen M., Kintz H., Liu X., Gaveau M.-A., Le Garrec J.-L., Robert E., Barreda F.-A., Etcheberry A., Reynaud C., Mitchell J.B., Miron C. X-ray Photoelectron Spectroscopy of Isolated Nanoparticles. J. Phys. Chem. Lett. 2014;5(19):3399-3403. https://doi.org/10.1021/jz501532c
100. Jiang Z.X., Alkemade P.F.A. The surface transient in Si for SIMS with oblique low-energy O2+ beams. Surf. Interface Anal. 1999;27(3):125-131. https://doi.org/10.1002/(SICI)1096-9918(199903)27:3<125::AID-SIA490>3.0.CO;2-8
101. Hajati S., Tougaard S. XPS for non-destructive depth profiling and 3D imaging of surface nanostructures. Anal. Bioanal. Chem. 2010;396(8):2741-2755. https://doi.org/10.1007/s00216-009-3401-9
102. Sostarecz A.G., McQuaw C.M., Wucher A., Winograd N. Depth Profiling of Langmuir-Blodgett Films with a Buckminsterfullerene Probe. Anal. Chem. 2004;76(22):6651-6658. https://doi.org/10.1021/ac0492665
103. Kozole J., Szakal C., Kurczy M., Winograd N. Model multilayer structures for three-dimensional cell imaging. Appl. Surf. Sci. 2006;252(19):6789-6792. https://doi.org/10.1016/j.apsusc.2006.02.209
104. Conlan X.A., Gilmore I.S., Henderson A., Lockyer N., Vickerman J. Polyethylene terephthalate (PET) bulk film analysis using C60+, Au3+, and Au+ primary ion beams. Appl. Surf. Sci. 2006;252(19):6562-6565. https://doi.org/10.1016/j.apsusc.2006.02.068
105. Sakai Y., Iijima Y., Takaishi R., Asakawa D., Hiraoka K. Depth Profiling of Polystyrene Using Charged Water Droplet Impact. J. Surf. Anal. 2009;15(3):283-286. https://doi.org/10.1384/jsa.15.283
106. Galindo R.E., Gago R., Albella J., Lousa A. Comparative depth-profiling analysis of nanometer-metal multilayers by ion-probing techniques. TrAC Trends Anal. Chem. 2009;28(4):494-505. https://doi.org/10.1016/j.trac.2009.01.004
107. Bakaleinikov L.A., Domracheva Ya.V., Zamoryanskaya M.V., Kolesnikova E.V., Popova T.B., Flegontova E.Yu. Depth profiling of semiconductor structures by X-ray microanalysis using the electron probe energy variation technique. Semiconductors. 2009;43(4):544-549. https://doi.org/10.1134/S1063782609040265. Original Russian Text: Bakaleinikov L.A., Domracheva Ya.V., Zamoryanskaya M.V., Kolesnikova E.V., Popova T.B., Flegontova E.Yu. Depth profiling of semiconductor structures by X-ray microanalysis using the electron probe energy variation technique. Fizika i Tekhnika Poluprovodnikov. 2009;43(4):568-576 (in Russ.).
108. Jablonski A., Powell C.J. Practical expressions for the mean escape depth, the information depth, and the effective attenuation length in Auger-electron spectroscopy and X-ray photoelectron spectroscopy. J. Vac. Sci. Technol. A. 2009;27(2):253-261. https://doi.org/10.1116/1.3071947
109. Hesse R., WeiB M., Szargan R., Streubel P, Denecke R. Comparative study of the modelling of the spectral background of photoelectron spectra with the Shirley and improved Tougaard methods. J. Electron. Spectros. Relat. Phenomena. 2013;186:44-53. https://doi.org/10.1016/j.elspec.2013.01.020
110. Tougaard S. Practical guide to the use of backgrounds in quantitative XPS. J. Vac. Sci. Technol. A. 2021;39(1):011201(22 p.). https://doi.org/10.1116/6.0000661
111. Engelhard M.H., Baer D.R., Herrera-Gomez A., Sherwood P. Introductory guide to backgrounds in XPS spectra and their impact on determining peak intensities. J. Vac. Sci. Technol. A. 2020;38(6):063203(24 p.). https://doi.org/10.1116/6.0000359
112. Jain V., Biesinger M.C., Linford M.R. The Gaussian-Lorentzian Sum, Product, and Convolution (Voigt) functions in the context of peak fitting X-ray photoelectron spectroscopy (XPS) narrow scans. Appl. Surf. Sci. 2018;447:548-553. https://doi.org/10.1016/j.apsusc.2018.03.190
113. Hesse R., WeiB M., Szargan R., Streubel P., Denecke R. Improved peak-fit procedure for XPS measurements of inhomogeneous samples—Development of the advanced Tougaard background method. J. Electron Spectros. Relat. Phenomena. 2015;205:29-51. https://doi.org/10.1016/j.elspec.2015.06.013
114. Zborowski C., Vanleenhove A., Conard T. Comparison and complementarity of QUASES-Tougaard and SESSA software. Appl. Sur. Sci. 2022;585:152758(8 p.). https://doi.org/10.1016/j.apsusc.2022.152758
115. Briggs D., Seah P. (Eds.). Practical surface analysis: Auger and X-ray photoelectron spectroscopy. Chichester: John Wiley & Sons; 1996. V. 1. 674 p.
116. Sun C.Q. Size dependence of nanostructures: Impact of bond order deficiency. Prog. Solid State Ch. 2007;35(1):1-159. https://doi.org/10.1016/j.progsolidst-chem.2006.03.001
117. Hill J., Royce D.G., Fadley C.S., Wagner L.F., Grunthaner F.J. Properties of oxidized silicon as determined by angular-dependent X-ray photoelectron spectroscopy. Chem. Phys. Lett. 1976;44(2):225-231. https://doi.org/10.1016/0009-2614(76)80496-4
118. Seah M.P. Intercomparison of silicon dioxide thickness measurements made by multiple techniques: The route to accuracy. J. Vac. Sci. Technol. A. 2004;22(4):1564-1571. https://doi.org/10.1116/1.1705594
119. Tougaard S. Energy loss in XPS: Fundamental processes and applications for quantification, non-destructive depth profiling and 3D imaging. J. Electron. Spectrosc. Relat. Phenom. 2010;178-179:128-153. https://doi.org/10.1016/j.elspec.2009.08.005
120. Tougaard S. Universality Classes of Inelastic Electron Scattering Cross-sections. Surf. Interface Anal. 1997;25(3):137-154. https://doi.org/10.1002/(SICI)1096-9918(199703)25:3<137::AID-SIA230>3.0.CO;2-L
121. Tougaard S. Quantification of Nanostructures by Electron Spectroscopy. In: Briggs D., Grant J.T. (Eds.). Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy. IM Publications; 2003. P. 295-343.
122. Iwai H., Hammond J.S., Tanuma S. Recent status of thin film analyses by XPS. J. Surf. Anal. 2009;15(3):264-270. https://doi.org/10.1384/jsa.15.264
123. Gunter P.L.J., Dejong A.M., Niemantsverdriet J.W., Rheiter H.J.H. Evaluation of take-off angle-dependent XPS for determining the thickness of passivation layers on aluminum and silicon. Surf. Interface Anal. 1992;19(1-12):161-164. https://doi.org/10.1002/sia.740190131
124. Cole D.A., Shallenberger J.R., Novak S.W., Moore R.L. SiO2 thickness determination by X-ray photoelectron spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, Rutherford backscattering, transmission electron microscopy, and ellipsometry. J. Vac. Sci. Technol. B. 2000;18(1):440-444. https://doi.org/10.1116/1.591208
125. Alexander M.R., Thompson G.E., Zhou X., Beamson G., Fairley N. Quantification of oxide film thickness at the surface of aluminum using XPS. Surf. Interface Anal. 2002;34(1):485-489. https://doi.org/10.1002/sia.1344
126. Olsson C.-O.A., Landolt D. Atmospheric oxidation of a Nb-Zr alloy studied with XPS. Corros. Sci. 2004;46(1):213-224. https://doi.org/10.1016/S0010-938X(03)00139-2
127. Kappen P., Reihs K., Seidel C., Voetz M., Fuchs H. Overlayer thickness determination by angular dependent X-ray photoelectron spectroscopy (ADXPS) of rough surfaces with a spherical topography. Surf. Sci. 2000;465(1-2):40-50. https://doi.org/10.1016/S0039-6028(00)00653-1
128. Martin-Concepcion A.I., Yubero F., Espinos J.P., Tougaard S. Surface roughness and island formation effects in ARXPS quantification. Surf. Interface Anal. 2004;36(8):788-792. https://doi.org/10.1002/sia.1765
129. Cumpson P.J. Thickogram: A method for easy film thickness measurement in XPS. Surf. Interface Anal. 2000;29(6):403-406. https://doi.org/10.1002/1096-9918(200006)29:6<403::AID-SIA884>3.0.CO;2-8
130. Cui Yi-T., Tougaard S., Oji H., Son J.-Y., Sakamoto Y., Matsumoto T., Yang A., Sakata O., Song H., Hirosawa I. Thickness and structure of thin films determined by background analysis in hard X-ray photoelectron spectroscopy. J. Appl. Phys. 2017;121(22):225307-1-10. https://doi.org/10.1063/1.4985176
131. Tougaard S. Novel Applications of Inelastic Background XPS Analysis: 3D Imaging and HAXPES. J. Surf. Anal. 2017;24(2):107-114. https://doi.org/10.1384/jsa.24.107
132. Paynter R.W. An ARXPS primer. J. Electron. Spectrosc. Relat. Phenom. 2009;169(1):1-9. https://doi.org/10.1016/j.elspec.2008.09.005
133. Cumpson P.J. Angle-resolved XPS and AES: depth-resolution limits and a general comparison of properties of depth-profile reconstruction methods. J. Electron. Spectrosc. Relat. Phenom. 1995;73(1):25-52. https://doi.org/10.1016/0368-2048(94)02270-4
134. Oswald S., Oswald F. Computer simulation of angle-resolved X-ray photoelectron spectroscopy measurements for the study of surface and interface roughnesses. J. Appl. Phys. 2006;100(10):104504(9 p.). https://doi.org/10.1063/1.2386938
135. Oswald S., Oswald F. A promising concept for using near-surface measuring angles in angle-resolved X-ray photoelectron spectroscopy considering elastic scattering effects. J. Appl. Phys. 2011;109(3):034305(11 p.). https://doi.org/10.1063/1.3544002
136. Herrera-Gomez A., Grant J. T., Cumpson P., Jenko M., Aguirre-Tostado F.S., Brundle C.R., Conard T., Conti G., Fadley C.S., Fulghum J., Kobayashi K., Kover L., Nohira H., Opila R.L., Oswald S., Paynter R.W., Wallace R.M., Werner W.S.M., Wolstenholme J. Report on the 47th IUVSTA Workshop “Angle-Resolved XPS: The current status and future prospects for angle-resolved XPS of nano and subnano films.” Surf. Interface Anal. 2009;41(11):840-857. https://doi.org/10.1002/sia.3105
137. Liu Y., Hofmann S., Wang J.Y. An analytical depth resolution function for the MRI model. Surf. Interface Anal. 2013;45(11-12):1659-1660. https://doi.org/10.1002/sia.5319
138. Yang J., Li W., Wang D., Li Y. Electronic Metal-Support Interaction of Single-Atom Catalysts and Applications in Electrocatalysis. Adv. Mater. 2020;32(49):2003300(29 p.). https://doi.org/10.1002/adma.202003300
139. Moretti G. Auger parameter and Wagner plot in the characterization of chemical states by X-ray photoelectron spectroscopy: a review. J. Electron. Spectrosc. Relat. Phenom. 1998;95(2-3):95-144. https://doi.org/10.1016/S0368-2048(98)00249-7
140. Moretti G. The Wagner plot and the Auger parameter as tools to separate initial- and final-state contributions in X-ray photoemission spectroscopy. Surf. Sci. 2013;618:3-11. https://doi.org/10.1016/j.susc.2013.09.009
141. Zafeiratos S., Kennou A.A study of gold ultrathin film growth on yttria-stabilized ZrO2(100). Surf. Sci. 1999;443(3):238-244. https://doi.org/10.21016/S0039-6028(99)01014-6
142. Fu Q., Wagner T. Interaction of nanostructured metal overlayers with oxide surfaces. Surf. Sci. Rep. 2007;62(11):431-498. https://doi.org/10.1016Zj.sur-frep.2007.07.001
143. Fulghum J.E., Linton R.W. Quantitation of coverages on rough surfaces by XPS: an overview. Surf. Interface Anal. 1988;13(4):186—192. https://doi.org/10.1002/sia.740130404
144. Werner W.S.M., Chudzicki M., Smekal W., Powell C. Interpretation of nanoparticle X-ray photoelectron intensities. Appl. Phys. Lett. 2014;104(24):243106(3 p.). https://doi.org/10.1063/1.4884065
145. Frydman A., Castner D.G., Schmal M., Campbell C. A method for accurate quantitative XPS analysis of multimetallic or multiphase catalysts on support particles. J. Catal. 1995;157(1):133-144. https://doi.org/10.1006/jcat.1995.1274
146. Martin J.E., Herzing A.A., Yan W., Li X.-Q., Koel B.E., Kiely C.J., Zhang W.-X. Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles. Langmuir. 2008;24(8):4329-4334. https://doi.org/10.1021/la703689k
147. Tunc I., Suzer S., Correa-Duarte M.A., Liz-Marzan L. XPS Characterization of Au(Core)/SiO2 (Shell) Nanoparticles. J. Phys. Chem. B. 2005;109(16):7597-7600. https://doi.org/10.1021/jp050767j
148. Diebold U., Pan J.-M., Madey T.E. Growth mode of ultrathin copper overlayers on TiO2(110). Phys. Rev. B. 1993;47(7):3868-3876. https://doi.org/10.1103/PhysRevB.47.3868
149. Sharp J.C., Campbell C.T. Quantitative modeling of electron spectroscopy intensities for supported nanoparticles: The hemispherical cap model for non-normal detection. Surf. Sci. 2015;632:L5-L8. https://doi.org/10.1016/j.susc.2014.08.010
150. Yang D.Q., Gillet J.N., Meunier M., Sacher E. Room temperature oxidation kinetics of Si nanoparticles in air, determined by X-ray photoelectron spectroscopy. J. Appl. Phys. 2005;97(2):24303(6 p.). https://doi.org/10.1063/1.1835566
151. Vazquez-Pufleau M.A. Simple Model for the High Temperature Oxidation Kinetics of Silicon Nanoparticle Aggregates. Silicon. 2021;13(3):189-200. https://doi.org/10.1007/s12633-020-00415-3
152. Gillet J.N., Meunier M. General equation for size nanocharacterization of the core-shell nanoparticles by X-ray photoelectron spectroscopy. J. Phys. Chem. B. 2005;109(18):8733-8737. https://doi.org/10.1021/jp044322r
153. Shard A.G., Wang J., Spencer S.J. XPS Topofactors: Determining Overlayer Thickness on Particles and Fibres. Surf. Interface Anal. 2009;41(7):541-548. https://doi.org/10.1002/sia.3044
154. Patrone L., Nelson D., Safarov V.I., Sentis M., Marine W. Photoluminescence of silicon nanoclusters with reduced size dispersion produced by laser ablation. J. Appl. Phys. 2000;87(8):3829-3837. https://doi.org/10.1063/1.372421
155. Hofmeister H., Huisken F., Kohn B. Lattice contraction in nanosized silicon particles produced by laser pyrolysis of silane. Eur. Phys. J. D. 1999;9(1-4):137-140. https://doi.org/10.1007/s100530050413
156. Werner W.S.M., Smekal W., Powell C.J. Simulation of Electron Spectra for Surface Analysis. Version 2.1 User's Guide. 2017. 134 р. https://doi.org/10.6028/NIST.NSRDS.100-2017. Accessed April 01, 2023.
157. Risterucci P., Renault O., Zborowski C., Bertrand D., Torres A., Rueff J.-P., Ceolin D.,Grenet G., Tougaard S. Effective inelastic scattering cross-sections for background analysis in HAXPES of deeply buried layers. Appl. Surf. Sci. 2017;402:78-85. https://doi.org/10.1016/j.apsusc.2017.01.046
158. Baer D.R., Wang Y.-C., Castner D.J. Use of XPS to Quantify Thickness of Coatings on Nanoparticles. Micros. Today. 2016;24(2):40-45. https://doi.org/10.1017/S1551929516000109
159. Pauly N., Tougaard S., Yubero F. Modeling of X-ray photoelectron spectra: surface and core hole effects. Surf. Interface Anal. 2014;46(10-11):920-923. https://doi.org/10.1002/sia.5372
160. Hajati S., Zaporojtchenko V., Faupel F., Tougaard S. Characterization of Au nano-cluster formation on and diffusion in polystyrene using XPS peak shape analysis. Surf. Sci. 2007;601(15):3261-3267. https://doi.org/10.1016/j.susc.2007.06.001
161. Mansilla C., Gracia F., Martin-Concepcion A.I., Espinos J.P, Holgado J.P., Yubero F., Gonzalez-Elipe A.R. Study of the first nucleation steps of thin films by XPS inelastic peak shape analysis. Surf. Interface Anal. 2007;39(4):331-336. https://doi.org/10.1002/sia.2509
162. Mourdikoudis S., Pallares R.M., Thanh N.T.K. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale. 2018;10(27):12871-12934. https://doi.org/10.1039/C8NR02278J
163. Baer D.R. Guide to making XPS measurements on nanoparticles. J. Vac. Sci. Technol. A. 2020;38(3):031201. https://doi.org/10.1116/1.5141419
164. Baer D.R., Wang Y.-C., Castner D.J. Use of XPS to Quantify Thickness of Coatings on Nanoparticles. Micros. Today. 2016;24(2):40-45. https://doi.org/10.1017/S1551929516000109
165. Kjcrvik M., Hermanns A., Dietrich P., Thissen A., Bahr S., Ritter B., Kemnitz E., Unger W.E.S. Detection of suspended nanoparticles with near-ambient pressure X-ray photoelectron spectroscopy. J. Phys.: Condens. Matter. 2017;29(47):474002(9 p.). https://doi.org/10.1088/1361-648x/aa8b9d
Supplementary files
|
1. Investigation of heterogeneous processes at the solid–liquid interface using XPS | |
Subject | ||
Type | Исследовательские инструменты | |
View
(142KB)
|
Indexing metadata |
- The review summarizes the existing knowledge on the use of X-ray photoelectron spectroscopy (XPS) for the characterization of nanoparticles and nanomaterials.
- XPS provides depth information similar to the size of nanoparticles (up to 10 nm depth from the surface) and does not cause significant damage to the samples.
- Disadvantages of XPS are sample preparation requiring a dry solid form without contaminations and data interpretation.
- XPS provides information not only on the chemical identity, but also on the dielectric properties of nanomaterials, recording their charging/discharging behavior.
- Chemical information from the surface of nanoparticles analyzed by XPS can be used to estimate the thickness of nanoparticle coatings.
Review
For citations:
Ischenko A.A., Lazov M.A., Mironova E.V., Putin A.Yu., Ionov A.M., Storozhenko P.A. Analysis of nanoparticles and nanomaterials using X-ray photoelectron spectroscopy. Fine Chemical Technologies. 2023;18(2):135-167. https://doi.org/10.32362/2410-6593-2023-18-2-135-167