Method for obtaining recombinant antibodies produced by a cell line transduced with recombinant adenoviruses
https://doi.org/10.32362/2410-6593-2023-18-1-48-64
Abstract
Objectives. To develop a technology for obtaining recombinant antibodies in a suspension culture of human HEK293 cells using transduction with recombinant adenovirus serotype 5 (rAd5) carrying genes expressing heavy and light chains of antibodies on the example of two broadspectrum anti-influenza antibodies 27F3 and CR9114.
Methods. Ad5-27F3-H, Ad5-CR9114-H, and Ad5-27F3-L recombinant adenoviruses carrying the 27F3 antibody heavy chain gene, CR9114 antibody heavy chain gene, and 27F3 light chain gene, respectively, were generated using the AdEasy™ Adenoviral vector system. To accumulate preparative amounts of recombinant r27F3 and rCR9114 antibodies, the HEK293 suspension cell line was transduced with recombinant adenoviruses carrying genes for heavy and light chains of antibodies. The cells were cultured in a wave-type bioreactor. Chromatography was used to purify recombinant antibodies from the culture medium. After analyzing the molecular weights of purified antibodies using protein electrophoresis, their ability to interact with influenza A and B viruses was analyzed using the Western blot technique, while their ability to neutralize influenza A and B viruses was evaluated using the virus neutralization assay.
Results. A method for the accumulation and purification of recombinant r27F3 and CR9114 antibodies from the culture medium of a suspension culture of human cells following transduction with its recombinant adenoviruses carrying the genes for heavy and light chains of these antibodies was developed. The ability of the r27F3 antibody to interact with and neutralize influenza A viruses of group 1 (except influenza A virus subtype H2) and group 2 was shown. The ability of the rCR9114 antibody to interact with influenza A viruses of group 1 and influenza B viruses, as well as to neutralize influenza A viruses of group 1, was demonstrated.
Conclusions. A technology for obtaining recombinant antibodies in a suspension culture of HEK293 cells using transduction with recombinant adenoviruses carrying genes expressing heavy and light chains of antibodies was developed along with a confirmation of their specificity.
About the Authors
E. S. SedovaRussian Federation
Elena S. Sedova, Cand. Sci. (Biol.), Researcher, Laboratory of Molecular Biotechnology
18, Gamaleya ul., Moscow, 123098
Scopus Author ID 36341354100, ResearcherID S-4206-2017
D. N. Shcherbinin
Russian Federation
Dmitriy N. Shcherbinin, Cand. Sci. (Biol.), Researcher, Laboratory of Molecular Biotechnology
18, Gamaleya ul., Moscow, 123098
Scopus Author ID 36599350900, ResearcherID E-7682-2014
A. S. Bandelyuk
Russian Federation
Alina S. Bandelyuk, Junior Researcher, Laboratory of Molecular Biotechnology
18, Gamaleya ul., Moscow, 123098
Scopus Author ID 56290408700, ResearcherID D-9771-2014
L. V. Verkhovskaya
Russian Federation
Ludmila V. Verkhovskaya, Cand. Sci. (Biol.), Leading Researcher, Laboratory of Molecular Biotechnology
18, Gamaleya ul., Moscow, 123098
N. Yu. Viskova
Russian Federation
Natalia Yu. Viskova, Researcher, Laboratory of Molecular Biotechnology
18, Gamaleya ul., Moscow, 123098
E. D. Avdonina
Russian Federation
Elena D. Avdonina, Junior Researcher, Laboratory of Molecular Biotechnology
18, Gamaleya ul., Moscow, 123098
V. V. Prokofiev
Russian Federation
Vladimir V. Prokofiev, Laboratory Assistant-Researcher, Laboratory of Immunobiotechnology
18, Gamaleya ul., Moscow, 123098
Scopus Author ID 57300704700
E. I. Ryabova
Russian Federation
Ekaterina I. Ryabova, Junior Researcher, Laboratory of Immunobiotechnology
18, Gamaleya ul., Moscow, 123098
Scopus Author ID 57301278100, ResearcherID AAE-7335-2022
I. B. Esmagambetov
Russian Federation
Ilias B. Esmagambetov, Cand. Sci. (Biol.), Leading Researcher, Laboratory of Immunobiotechnology
18, Gamaleya ul., Moscow, 123098
Scopus Author ID 56120429700, ResearcherID E-3327-2014
K. A. Pervoykina
Russian Federation
Kristina A. Pervoykina, Laboratory Assistant-Researcher, Laboratory of Molecular Biotechnology
18, Gamaleya ul., Moscow, 123098
E. A. Bogacheva
Russian Federation
Competing Interests:
Elena A. Bogacheva, Junior Researcher, Laboratory of Molecular Biotechnology
18, Gamaleya ul., Moscow, 123098
A. A. Lysenko
Russian Federation
Andrei A. Lysenko, Senior Researcher, Laboratory of Molecular Biotechnology
18 Gamaleya ul., Moscow, 123098
Scopus Author ID 55573757600
M. M. Shmarov
Russian Federation
Maksim M. Shmarov, Dr. Sci. (Biol.), Head of the Laboratory of Molecular Biotechnology
18, Gamaleya ul., Moscow, 123098
Scopus Author ID 6507322279, ResearcherID D-8662-2014
References
1. Kaplon H., Chenoweth A., Crescioli S., Reichert J.M. Antibodies to watch in 2022. MAbs. 2022 Jan-Dec. 2022;14(1):2014296. https://doi.org/10.1080/19420862.2021.2014296
2. Kumar R., Parray H.A., Shrivastava T., Sinha S., Luthra K Phage display antibody libraries: A robust approach for generation of recombinant human monoclonal antibodies. Int. J. Biol. Macromol. 2019;135:907–918. https://doi.org/10.1016/j.ijbiomac.2019.06.006
3. Al’tshuler E.P., Serebryanaya D.V., Katrukha A.G. Obtaining recombinant antibodies and methods for increasing their affinity. Uspekhi Biologicheskoi Khimii. 2010;50:203–258 (in Russ.). URL: https://www.fbras.ru/wp-content/uploads/2017/10/Altschuler.pdf
4. Yu J., Guo Y., Gu Y., Fan X., Li F., Song H., Nian R., Liu W. A novel silk fibroin protein-based fusion system for enhancing the expression of nanobodies in Escherichia coli. Appl. Microbiol. Biotechnol. 2022;106(5–6):1967–1977. https://doi.org/10.1007/s00253-022-11857-7
5. Garvey M. Non-mammalian eukaryotic expression systems yeast and fungi in the production of biologics. J. Fungi (Basel). 2022;8(11):1179. https://doi.org/10.3390/jof8111179
6. Vazquez-Lombardi R., Nevoltris D., Luthra A., Schofield P., Zimmermann C., Christ D. Transient expression of human antibodies in mammalian cells. Nat. Protoc. 2019;13:99–117. https://doi.org/10.1038/nprot.2017.126
7. Korn J., Schäckermann D., Kirmann T., Bertoglio F., Steinke S., Heisig J., Ruschig M., Rojas G., Langreder N., Wenzel E.V., Roth K.D.R., Becker M., Meier D., van den Heuvel J., Hust M., Dübel S., Schubert M. Baculovirus-free insect cell expression system for high yield antibody and antigen production. Sci Rep. 2020;10(1):21393. https://doi.org/10.1038/s41598-020-78425-9
8. Huang Y.M., Hu W., Rustandi E., Chang K., Yusuf-Makagiansar H., Ryll T. Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnol. Prog. 2010;26(5):1400–1410. https://doi.org/10.1002/btpr.436
9. Gupta K., Parasnis M., Jain R., Dandekar P. Vectorrelated stratagems for enhanced monoclonal antibody production in mammalian cells. Biotechnol. Adv. 2019;37(8):107415. https://doi.org/10.1016/j.biotechadv.2019.107415
10. Jäger V., Büssow K., Wagner A., Weber S., Hust M., Frenzel A., Schirrmann T. High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells. BMC Biotechnol. 2013;13:52. https://doi.org/10.1186/1472-6750-13-52
11. Kim T.K., Eberwine J.H. Mammalian cell transfection: the present and the future. Anal. Bioanal. Chem. 2010;397(8):3173–3178. https://doi.org/10.1007/s00216-010-3821-6
12. Croset A., Delafosse L., Gaudry J.P., Arod C., Glez L., Losberger C., Begue D., Krstanovic A., Robert F., Vilbois F., Chevalet L., Antonsson B. Differences in the glycosylation of recombinant proteins expressed in HEK and CHO cells. J. Biotechnol. 2012;161(3):336–348. https:// doi.org/10.1016/j.jbiotec.2012.06.038
13. Tan E., Chin C.S.H., Lim Z.F.S., Ng S.K. HEK293 Cell Line as a Platform to Produce Recombinant Proteins and Viral Vectors. Front. Bioeng. Biotechnol. 2021;9:796991. https://doi.org/10.3389/fbioe.2021.796991
14. König J., Hust M., van den Heuvel J. Validation of the Production of Antibodies in Different Formats in the HEK293 Transient Gene Expression System. Methods Mol. Biol. 2021;2247:59–76. https://doi.org/10.1007/978-1-0716-1126-5_4
15. Ryabova E.I., Derkaev A.A., Esmagambetov I.B., Shcheblyakov D.V., Dovgii M.A., Byrikhina D.V., Prokof’ev V.V., Chemodanova I.P. Comparison of different technologies for producing recombinant adeno-associated virus on a laboratory scale. BIOpreparaty. Profilaktika, diagnostika, lechenie = BIOpreparations. Prevention, Diagnosis, Treatment. 2021;21(4):266–278 (in Russ.). https://doi.org/10.30895/2221-996X-2021-21-4-266-278
16. Greber U.F., Gomez-Gonzalez A. Adenovirus – a blueprint for gene delivery. Curr. Opin. Virol. 2021;48:49–56. https://doi.org/10.1016/j.coviro.2021.03.006
17. Lang S., Xie J., Zhu X., Wu N.C., Lerner R.A., Wilson I.A. Antibody 27F3 broadly targets influenza A group 1 and 2 hemagglutinins through a further variation in VH1-69 antibody orientation on the HA stem. Cell Rep. 2017;20(12):2935–2943. https://doi.org/10.1016/j.celrep.2017.08.084
18. Dreyfus C., Laursen N.S., Kwaks T., Zuijdgeest D., Khayat R., Ekiert D.C., Lee J.H., Metlagel Z., Bujny M.V., Jongeneelen M., van der Vlugt R., Lamrani M., Korse H.J., Geelen E., Sahin Ö., Sieuwerts M., Brakenhoff J.P., Vogels R., Li O.T., Poon L.L., Peiris M., Koudstaal W., Ward A.B., Wilson I.A., Goudsmit J., Friesen R.H. Highly conserved protective epitopes on influenza B viruses. Science. 2012;337(6100):1343–1348. https://doi.org/10.1126/science.1222908
19. Tutykhina I., Esmagambetov I., Bagaev A., Pichugin A., Lysenko A., Shcherbinin D., Sedova E., Logunov D., Shmarov M., Ataullakhanov R., Naroditsky B., Gintsburg A. Vaccination potential of B and T epitope-enriched NP and M2 against Influenza A viruses from different clades and hosts. PLoS One. 2018;13(1):e0191574. https://doi.org/10.1371/journal.pone.0191574
20. Shubladze A.K., Gaidamovich S.Ya. Kratkii kurs prakticheskoi virusologii (Short Course of Practical Virology). Мoscow: Medgiz; 1954. 273 p. (in Russ.).
21. Gribova I.Yu., Tillib S.V., Tutykhina I.L., Shmarov M.M., Logunov D.Yu., Verkhovska L.V., Naroditskii B.S., Gintsburg A.L. Effective Genetic Expression of Nanoantibodies by Recombinant Adenoviral Vector in vitro. Acta Naturae. 2011;3(3):64–70.
22. Tutykhina I.L., Sedova E.S., Gribova I.Y., Ivanova T.I., Vasilev L.A., Rutovskaya M.V., Lysenko A.A., Shmarov M.M., Logunov D.Y., Naroditsky B.S., Tillib S.V., Gintsburg A.L. Passive immunization with a recombinant adenovirus expressing an HA (H5)-specific single-domain antibody protects mice from lethal influenza infection. Antiviral. Res. 2013;97(3):318–328. https://doi.org/10.1016/j.antiviral.2012.12.021
23. Shcherbinin D.N., Alekseeva S.V., Shmarov M.M., Smirnov Yu.A., Naroditskii B.S., Gintsburg A.L. The Analysis of B-Cell Epitopes of Influenza Virus Hemagglutinin. Acta Naturae. 2016;8(1):13–20. https://doi.org/10.32607/20758251-2016-8-1-13-20
24. Esmagambetov I.B., Shcheblyakov D.V., Egorova D.A., et al. Nanobodies Are Potential Therapeutic Agents for the Ebola Virus Infection. Acta Naturae. 2021;13(4):53–63. https://doi.org/10.32607/actanaturae.11487
25. Throsby M., van den Brink E., Jongeneelen M., Poon L.L., Alard P., Cornelissen L., Bakker A., Cox F., van Deventer E., Guan Y., Cinatl J., ter Meulen J., Lasters I., Carsetti R., Peiris M., de Kruif J., Goudsmit J. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PloS One. 2008;3(12):e3942. https://doi.org/10.1371/journal.pone.0003942
Supplementary files
|
1. Electropherogram of purified r27F3 and rCR9114 antibodies | |
Subject | ||
Type | Исследовательские инструменты | |
View
(62KB)
|
Indexing metadata ▾ |
- A method for the accumulation and purification of recombinant r27F3 and CR9114 antibodies from the culture medium of a suspension culture of human cells following transduction with its recombinant adenoviruses carrying the genes for heavy and light chains of these antibodies was developed.
- The ability of the r27F3 antibody to interact with and neutralize influenza A viruses of group 1 (except influenza A virus subtype H2) and group 2 was shown.
- The ability of the rCR9114 antibody to interact with influenza A viruses of group 1 and influenza B viruses, as well as to neutralize influenza A viruses of group 1, was demonstrated.
Review
For citations:
Sedova E.S., Shcherbinin D.N., Bandelyuk A.S., Verkhovskaya L.V., Viskova N.Yu., Avdonina E.D., Prokofiev V.V., Ryabova E.I., Esmagambetov I.B., Pervoykina K.A., Bogacheva E.A., Lysenko A.A., Shmarov M.M. Method for obtaining recombinant antibodies produced by a cell line transduced with recombinant adenoviruses. Fine Chemical Technologies. 2023;18(1):48–64. https://doi.org/10.32362/2410-6593-2023-18-1-48-64